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Abstract 

By placing item statistics on a common scale, items piloted with groups of test takers who have 
different ability levels can be combined to yield a test with known characteristics. This project examined 
two approaches using the classical testing theory and one approach using the Rasch model for scaling 
item difficulty estimates. A simulation study was conducted to compare the true item difficulties with 
the scaled difficulties. While bias and error diminished as sample sizes increased, all three approaches 
were found to be extremely accurate at all tested sample size values. There are slight differences in the 
approaches in terms of sensitivity to variations on the test-taker ability distributions. 

 

When new items are piloted on separate forms to 
determine their adequacy for operational use, it is 
necessary to ensure the item statistics from each form 
are comparable. This is not a problem if a random 
equivalent group design is used in the data collection. 
In that situation, the groups taking the separate forms 
are equivalent, each representing the test population; 
therefore, the statistics from different forms are 
comparable. When random equivalent groups cannot 
be assured, however, researchers switch to a 
nonequivalent groups anchor test (NEAT) design in which a 
set of common items is administered to all groups. 
These common items will provide the statistical 
adjustments necessary to scale item statistics from 
each form to a common scale so that they will be 
comparable.  

In this study, we present and evaluate three methods 
of scaling the difficulty estimates from nonequivalent 
groups using simulated data.  

Two methods are based on classical testing theory; the 
third is based on item response theory (IRT).  

The Problem 

The initiation of this study coincided with the 
development of a new test. The challenge was to pre-
test 100 new items with three groups of test takers of 
presumably nonequivalent ability; we allowed each 
group to take only 40 items. With the NEAT design, 
10 items would be selected as anchors and the 
remaining 90 items would be assigned to three 
nonoverlapping forms of 30 items each. We chose this 
design so that impact of ability differences on item 
difficulty estimates could be statistically removed. The 
question of how to remove those differences 
remained, however. 

In this study, each group of test takers acquires only 
one of the three forms of new test items; random 
assignment of test takers to forms is not feasible. 
Nothing is known a priori about the items or the 
examinees’ abilities. We randomly selected a common 
set of anchor items and administered them to all test 
takers to enable comparison of ability among the 
groups taking the forms. The remaining items are 
divided evenly, creating unique sets of items 
administered to each group, denoted as Form 1, Form 
2, or Form 3. All items are dichotomously scored. 
Table 1 displays the data collection design. 
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Table 1. Data Collection Design 
 Anchor Form 1 Form 2 Form 3 

Group 1 x x   
Group 2 x  x  
Group 3 x   x 

 

The question, then, is how to use data collected from 
the groups’ performance on the anchor items most 
effectively to ensure all item statistics are on a common 
scale. Previous research led to the evaluation of three 
different methods for this scaling. We conducted a 
simulation study to determine which of the methods 
would yield scaled values closest to the true values.  

Related Literature 

The NEAT design is commonly used in practice for 
equating test scores across forms. Holland and Dorans 
(2006) describe several methods for equating scores on 
forms using a NEAT design. Very little literature is 
available, however, on how to scale the item statistics 
with such a design. 

Linear transformation method 

Thurstone (1925) introduced a method for scaling tests 
that were designed for different age groups based on 
the difficulties of common items. Although 
Thurstone’s purpose in that paper is different from our 
goal, the transformation of item difficulty estimates 
from one age (ability) group to another can be applied 
to our study. 

In general, item difficulty, p, is defined as the 
proportion of correct answers. It needs to be converted 
to at least an interval scale before linear 
transformations apply. Lord (1980, pp. 213–215) tried 
to re-scale the p-values estimated from two subgroups 
to compare them for differential item functioning (DIF). He 
noticed the curvilinear relationship between the two 
sets of p- values. He suggested that all ps be converted 
to a z-scale through the inverse normal function before 
comparing them. Gullikson (1950, pp. 368–369) 
constructed the College Entrance Examination Board 
delta-scale, which was a linear transformation of the 

inverse normal deviates for similar purposes. In our 
study, we will first convert item difficulty estimates 
from a p-scale to inverse normal deviates, then make 
the adjustment with linear transformations based on 
the group differences of the examinee ability, and 
finally convert the adjusted (scaled) item difficulty 
estimates back to the p-scale. This is the first method 
evaluated for scaling item difficulties. Specific steps are 
outlined in the Methodology section. 

Rasch method 

When an IRT framework is used in test development, 
scaling item statistics is a common topic. By design, 
IRT item statistics are calibrated on an arbitrary scale. 
In order to put item statistics on an intended scale, 
either scaling is built into the calibration process or a 
post hoc scaling is applied to transform the item 
statistics from an arbitrary scale to an intended scale. 
Many researchers (Hanson & Beguin, 1999; Kim & 
Cohen, 1998; and Peterson, Cook, & Stocking, 1983) 
have evaluated different methods. For the data 
collection design in our study, we chose the concurrent 
calibration method. This is the second method 
evaluated for scaling the item difficulty estimates. We 
will first calibrate the item statistics and then scale them 
to our target scale. 

Standardized method 

In studying DIF, Dorans and Kulick (1983) developed 
a method called “standardization method.” They used 
this method  to scale item difficulty estimates from 
subgroups to a common scale for comparison. Dorans, 
Schmitt, and Bleistein (1988) also applied it to assessing 
differential speediness. In some testing organizations, 
the standardization method is also applied to scaling 
item difficulty estimates (Dorans, 2007).  
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The scaled p from this method is the weighted sum of 
conditional difficulty estimates. The standardization 
method is especially powerful when there is an existing 
ability score (such as GMAT® scores), which may 
replace the anchors when new items are pre-tested with 
the same test population. The weights are often 
calculated with the whole population, so the error in 
defining the population weights is eliminated with this 
method.  

This is our third method in the current study. We will 
explain it in the next section. 

Methodology 

We designed and implemented a simulation study to 
evaluate the performance of the three methods for the 
NEAT design. In this section, we describe the 
methodologies used for the simulation and for the 
three scaling methods. 

Simulations 

As discussed previously, the groups of the test takers 
might not have the same ability. One group might be of 
higher ability than the other two. The first factor we 
considered in the simulation study was the ability of the 
groups. The θ for Group 1 had a normal ability 
distribution with a mean of -0.3; the mean θ for Group 
2 was 0; and the mean θ for Group 3 was 0.5. The 
standard deviation of the θ for each group was 1. 

We expect that item difficulty estimates become more 
stable with larger sample size; therefore, sample size 
might also interact with the performance of the three 
scaling methods. In this study, we included three 
sample sizes of 250, 500, and 1,000 for the difficulty 
estimations. 

To evaluate the efficacy of the three methods and their 
interactions with test takers’ ability and sample size, we 
built three ability groups and three sample sizes in the 
simulation design. Table 2 presents the design.  

 

Table 2. Simulation Design 

Ability Group 
Sample Size 

250 500 1,000 
Group 1 (N~(-0.3, 1)) Anchor + Form 1 Anchor + Form 1 Anchor + Form 1 
Group 2 (N~(0, 1)) Anchor + Form 2 Anchor + Form 2 Anchor + Form 2 
Group 3 (N~(0.5, 1)) Anchor + Form 3 Anchor + Form 3 Anchor + Form 3 

 

The simulated responses to the items were generated 
with the three-parameter-logistic (3PL) IRT models. 
First, 100 items were sampled such that their 
parameters had distributions of b ~ N(0, 1),  
a ~ LogN(1, 0.32), and c = .25. These items were 
randomly divided into four independent sets with 10, 

30, 30, and 30 items. The 10-item set became the 
anchor set and the three 30-item sets became Forms 1, 
2, and 3. The means and standard deviations of the a- 
and b-parameters of the item sets are displayed in 
Table 3. The c-parameter for all items was fixed at 
0.25, so they are excluded from Table 3.  

 

Table 3. Means (Standard Deviations) of the a- and b-Parameters 
 No. of Items a b 

Anchor Set 10 0.76 (0.18) 0.48 (0.63) 
Form 1 30 0.80 (0.22) -0.04 (0.83) 
Form 2 30 0.75 (0.19) -0.02 (1.09) 
Form 3 30 0.75 (0.21) -0.18 (1.04) 
All items 100 0.76 (0.21) -0.03 (1.00) 
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Note that the mean b-parameter for the anchor set is 
higher than those of the forms. We decided not to  
re-sample the anchor items to match the mean  
b-parameters of the forms. These parameters in  
Table 3 likely represents a common scenario in a new 
testing program whenever anchor items have to be 
selected without known statistics.  

Responses were generated for each of the conditions 
(the cells in Table 2). The generated responses 
provided the basis for evaluating the scaling methods. 
A total of 30 data sets (29 replications) were generated 
and used in this study. From each data set of 
responses, we drew random samples from each group 
corresponding to the different sample sizes and 
analyzed them three times—one for each scaling 
method.  

Methods of scaling item difficulty estimates 

Since the three groups are not equivalent in ability, 
nonanchor items will not have comparable difficulty 
estimates. To compare and use them for future 
assembly of test forms, item difficulty estimates from 
each form need to be scaled to a common scale.  
In this study, we defined the target scale as the 
difficulty estimates that are calculated with responses 
on the anchor items of all three groups combined.  
To facilitate the discussion, we use the following 
notations: 

• p = true item difficulty  
• p* = raw or observed item difficulty  
• p’ = the item difficulty on the target scale, or the 

scaled item difficulty 
The asterisk (*) and prime (’) will also be used with 
other interim statistics, denoting “raw” or “scaled” 
statistics. The implementation of the three scaling 
methods is discussed below. 

Linear transformation method 

We first converted item difficulty estimates from the p- 
to a z-scale through the inverse normal function and 
then made adjustment with linear transformations 
based on the group differences of the examinee ability. 
Finally, we converted the adjusted (scaled) item 
difficulty estimates back to the p-scale.  

We followed these steps in implementing the linear 
transformation method: 

1. Calculate the p* with the data from each form for 
both anchor and nonanchor items 

2. Calculate the p’ of anchor items with data from all 
three groups 

3. Convert the observed p* of all items to z-scale of 
normal deviates1 to derive zp* such that  

ф(zp*) = p*  

4. Convert the p’ of the anchor items to z-scale so 
that  

ф(zp’) = p’  
5. Estimate the scaling parameters using the zp* and 

zp’ of the anchors as  

A = 
*

'

p

p

z

z

σ
σ

 and 

 B = μ(zp’) - A μ(zp*) 

6. Apply the scaling to the nonanchor items by form 
to derive the zp’ of nonanchor items. The linear 
transformation is  

zp’ = A(zp*) + B 

7. Convert all the zp’ back to p’ such that  

p’=ф(zp’) 

Rasch method 

Although 3PL IRT models were used for generating 
the response data for this study, we chose the Rasch 
model for the scaling method. Our focus was on the 
item difficulty and we found that the Rasch model 
sufficed for this purpose. A concurrent calibration was 
first run for calibrating the item parameters using a 
variant of PARAM-3PL (Rudner, 2005). The input 
data included a single sparse matrix of responses of all 

                                                 
1 Items difficulty p has a very counterintuitive interpretation. 
Items with larger p values are easier than items with smaller  
p-values. In both Lords’s z-scale and Gullikson’s delta scale, z(1-p) 
is used for an item with p rather than z(p). Therefore, their zs or 
deltas have larger values for more difficult items. In our study, we 
simply used z(p) in the z-conversion. It will not change our results 
and we will convert the item difficulty back to p after the scaling. 
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test takers to all items. Responses for items that were 
not administered to some groups were coded as 
missing. We fixed the a-parameters at 1 and all  
c-parameters at .25. The fit of estimated item models 
to the data was reasonable. 

All the resultant item measures (b*-parameters) were 
then on the same scale from the concurrent 
calibration. Like any other IRT parameter calibrations, 
however, the θ-scale underlying the item b*-parameters 
was an arbitrary scale because no scaling process had 
been built into the calibration process. Two scaling 
methods were available to make sure that the item or 
person parameters were on a specified scale. Both 
methods require one of two things: (1) anchor items 
with known item parameters should be administered 
with the new items, or (2) examinees with known θs 
must respond to the new items. One method was to 
use either fixed item parameter or fixed θ calibration. 
By fixing the anchor items to their known parameter 
values or fixing the examinees’ ability to their known 
θs in the calibration, all the resultant item parameters 
and θs should be on the scale represented by the 
known item parameters or θs. The other method was 
to first calibrate the item or person parameters on an 
arbitrary scale and then transform them linearly to the 
target scale using the known item parameters or θs.  
In this study, we used the second method for scaling 
the item parameters.  

The following is the procedure we used in our study: 

1. Estimate the item measures (b*-parameters) from a 
concurrent calibration run 

2. Calculate the p’ of the anchors as the proportions 
of correct answers of all three groups of simulees 

3. Convert all the p’ of the anchors to Rasch b-
parameters as 

)1ln('

p
pb −=  

4. Estimate the transformation parameters using the 
two sets of b of the anchor items (b’ from the 
responses and b* from the calibration) as  

A = 
*

'

b

b

σ
σ

 and 

B = μ(b’) - A μ(b*) 

5. Apply the transformation to all the b* of the 
nonanchor items 

b’ = A(b*) + B 

6. Convert resultant b’ to scaled difficulty estimates p’ 
using  

'1
1' be

p
+

=  

Standardization method 

The standardization method in this study is defined as  

p’ ∑ ×=
k

kk pw * , 

where k is the ability groups based on the performance 
on anchor items, wk is the proportion of test takers in 
each ability group, and p*k is the proportion of correct 
answers to a nonanchor item conditional on k. We 
implemented the method as follows: 

1. Calculate a number right total score on anchor 
items for each simulee 

2. Sort simulees into k-ability groups  

3. Calculate the conditional weights wk such that 

∑
k

kw = 1 

4. Calculate the conditional p* of a nonanchor item 

5. Calculate the p’ for the item as the weighted sum 
of conditional p* 

6. Repeat 4 and 5 for all other nonanchor items 
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Analyses 

For each of the 30 simulated data sets, we performed 
nine scalings, one for each method on each sample 
size. The criteria for evaluating the performance of the 
three scaling methods were the bias and error of the 
scaled item difficulty estimates (p’). Smaller errors for a 
method indicated better performance. The errors in 
the scaled item difficulty were defined as p – p’. Since 
we have the IRT item parameters and simulees’ θs for 
generating the responses, we calculated the true item 
difficulty p for each item as the sum over all simulees 
of the probabilities of a correct response: 

( )

se

se
e

N

P
p

⊂

⊂
∑

=
θ

, 

where e was simulees; P(θe) was the probability of a 
correct answer given the item’s a, b, and c parameters, 
and the simulees’ θ; s  was the sample size levels. The 
sample size level was in the equation because we 
scaled the item difficulty estimates separately for each 
sample size level. To avoid scaling of item difficulty 
estimates across replications for comparisons, we 
choose to use the true p of each item calculated within 
each replication. We defined the target scale (p’) as the 
item difficulty estimates from all test takers who took 
any one of the three forms. Accordingly, the true item 
difficulty was calculated with all the simulees in all 
three groups for a sample size level within each 
replication. For example, for the 500 level, the true 
difficulty p of an item is the sum of the P(θe)s of the 
1,500 simulees. 

We also selected the root mean square error as our 
measure of error and bias. They were calculated by 
method by ability group and by sample size for each 
replication. The root mean square error was defined as  

i

i

N

pp
RMSE

∑ −
=

2)'(
 

where the summation is over the i items. 

Bias was calculated as the RMSE between the scaled p’ 
and the true p using the anchor items; errors were 
calculated using the nonanchor items. The aggregated 
errors and biases across replications will be reported. 
The scaling methods with smaller mean error across 
replications will be considered better than those with 
larger mean errors. To get a sense of how big the 
errors were between the p’ and p in the unit of p, we 
also estimated the average of the differences. The 
means of the average differences across replications 
will also be reported in next section. 

Results 

The magnitude of the mean bias was tiny for all 
methods and all sample sizes. Figure 1 presents the 
mean bias of the three methods by sample size. It is 
clear that as the sample size increases, bias decreases 
for all three methods. At sample sizes equal to 250 and 
500, the linear transformation method and the 
standardization method seem to have similar bias and 
the Rasch method seems to produce smaller bias in 
comparison. At sample size of 1,000, however, the 
three methods show similar bias. Smaller bias indicates 
better recovery of the item difficulties in the simulated 
data. 
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Figure 1. Mean Bias by Sample Size 
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In the next sections, errors are reported for the three 
methods. After the item difficulties have been scaled 
with each method, smaller RMSE indicates better 
recovery of the true item difficulties by the scaled 
difficulty estimates. Figure 2 is the mean RMSE by 
ability groups. It is obvious that the item difficulties 
estimated from the medium-ability group show smaller 
errors than those of the low- and high- ability groups. 
This is consistent for all three methods. The ability 
distribution of the medium group is similar to that of 
the population. Since the target scale for the study was 

based on the three groups combined, the item 
difficulty estimates calculated from the medium ability 
group could be very close to their target scale values, 
thus lest affected by any scaling methods. For the 
Rasch method, the RMSE for the three ability groups 
are almost identical. It seems to have performed better 
than the other two methods for the low- and high- 
ability groups. The linear transformation method 
seems to have performed better than the 
standardization method for the low- and high-ability 
groups.  
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Figure 2. Mean RMSE by Ability 
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We may conclude that when the sample ability 
distribution is close to the population ability 
distribution, all three methods will give similar results. 
When the sample ability is different from that of the 
population, however, Rasch method works the best 

and the linear transformation method might work 
better than the standardization method. 

In Figure 3, the mean RMSE are given by sample size. 
As was the case with the bias, the errors decrease as 
sample sizes increase.  
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Figure 3. Mean RMSE by Sample Size 
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The above errors were calculated as the square roots 
of mean squared errors. It makes it easy to compare 
the methods; however, it loses the magnitude of the 
mean differences on the p-scale. Figure 4 shows the 
mean differences between the true and the scaled 
difficulties for each method by ability group (p–p’). 
While the mean differences are quite small for all 
methods, the standardization method shows the 

largest mean differences for the low- and high-ability 
groups, 0.025 and -0.028. The other two methods 
seem to have very small mean differences even for the 
low- and high-ability groups. We conclude that caution 
may be needed when using the standardization 
method with samples that are different in ability 
distributions from the intended population in 
comparison with the other two methods. 
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Figure 4. Mean p-Value Differences by Ability 
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Discussion and Conclusion 

When item difficulties are placed on a common scale, 
questions piloted with different, nonequivalent groups 
can be combined to yield a test with known 
characteristics. Such scaling has traditionally been 
touted as a major advantage of item response theory 
and the Rasch model (see Wright and Stone, 1979). 
Although not prominent in the research literature, 
item p-value scaling is also possible within the classical 
measurement theory framework. 

Two classical methods and one IRT method for 
scaling item difficulties estimated from nonequivalent 
groups based on a common anchor item design were 
evaluated by comparing the scaled item difficulties 
with the true item difficulties. One classical approach 
was based on a linear transformation of inverse 
normal deviates of the p-values. Another was based on 
weighting observed conditional p-values. Data were 

simulated such that three independent and 
nonequivalent groups of examinees took three 
nonoverlapping forms of a 30-item test along with a 
common set of 10 anchor items. Each of the three 
scaling approaches was applied to the data using 250, 
500, and 1,000 independent simulees per form. Using 
the same set of generating item and ability parameters, 
the process was repeated an additional 29 times using 
different sets of simulees. 

As measured by the magnitude of the bias and error 
and the magnitude of the mean difference between 
scaled and true item difficulties, all three approaches 
worked extremely well. The average differences in p-
values were .03 or less. As expected the mean bias and 
RMSE decreases as sample size increases. At 1,000 test 
takers, the mean bias and error values for all methods 
were less than .008 and .025 respectively. At both 250 
and 500, the Rasch method seems to perform slightly 
better than the linear transformation and the 
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standardization methods. When the examinee groups 
show ability distributions different from those of the 
test population, the Rasch method outperformed the 
linear transformation method, which outperformed 
the weighted standardization method.  

This research demonstrated that classical approaches 
can accomplish the same item difficulty scaling 
precision as the Rasch model approach. Because the 
errors and bias were all small, there are minimal 
practical differences between approaches. The 
sensitivity of the weighted standardization approach 
warrants further investigation, however. 
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