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Abstract 

Scale stability is an important quality for any large-scale computer adaptive test (CAT) program and should be 
maintained through research on scale drift evaluations in the CAT operations. However, there is scarcely any 
literature on evaluating scale drift with CAT using both observed and simulated data. A method for evaluating 
scale drift is outlined and illustrated in this paper. In this study, a special online data collection method for the 
GMAT® Quantitative measure was designed and implemented. A modified root mean squared difference 
statistic was used to measure the difference in item parameters. Then an empirical baseline was established 
using simulations for evaluating the difference. The result showed that scale drift was not detected in the 
GMAT® Quantitative measure and the observed differences between the two sets of item parameters 
calibrated at two time points were random variations.

Introduction 

For a testing program that has multiple administrations 
with new test forms per year over many years, it is critical 
to maintain a stable reporting score scale so that scores are 
comparable across administrations and test forms. Special 
studies are conducted by psychometricians from time to 
time to monitor the stability of a test’s reporting score 
scale. In a linearly administered test such as a paper-pencil 
test (PPT), every examinee sees the same test items in the 
same test form during an administration. The test form 
used in a particular administration is equated to a 
reference form. The focus of a scale stability study is to 
identify scale drift as a result of equating a new test form 
to “one or more of the existing forms for which 
conversions to the reference scale (i.e., the reporting scale) 
are already available” (Angoff, 1984, p. viii). 

In a computer adaptive test (CAT), however, each 
examinee can potentially see a different collection of 
operational test items that are selected from a large pool 
of calibrated test items, and there is not a unique test form 
for all examinees. The focus of monitoring scale stability 
is to see if there is any scale drift resulting from errors in 
the process of item calibration and parameter scaling of 
new items over time. This is because CAT operates within 
the framework of the item response theory (IRT) and  

employs some online item calibration method to calibrate 
and scale new items (Glas, 1998). In the IRT framework, 
all examinees’ ability estimates and item parameters share 
the same scale, called the θ scale by convention. In an 
online item calibration design, new items can be linearly 
administered together with operational items that are 
administered adaptively and can be calibrated and scaled 
such that the new items are put on the existing scale of the 
operational items. 

Errors in the calibration and scaling process may lead to 
certain degrees of scale drift over time, and this, in turn, 
may impact the test scores to the extent that, in the worst 
scenario, scores may not even be comparable. In a CAT 
program, new items are developed, calibrated, and added 
to an item bank from time to time, and old items are 
retired due to over-exposure or other reasons. Although 
efforts have been made to maintain a stable scale over 
time, where new items are constantly calibrated and put on 
the same scale with the operational items that have already 
been calibrated, this is not a guarantee for scale stability. 
In fact, accumulated errors in the calibration and scaling 
process can lead to a scale change. When this happens, the 
original interpretation of scores may no longer be valid. 
Therefore, it is both important and necessary to monitor 
scale stability over time in a CAT program. 
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Although extensive research has been conducted on 
various equating methods for linear tests like PPT (Kolen 
& Brennan, 1995), little can be found in CAT literature 
on scale stability issues. Prior to a study by Guo and 
Wang (2003), there was only one directly related 
reference by Stocking (1988). In that study, Stocking 
conducted a sequence of six rounds of simulations for 
online calibration in a CAT environment.  All the data 
were simulated and Stocking did find evidence of scale 
drift from her study. 

As CAT becomes mature and is used more often, it is 
essential to call attention to scale stability in CAT 
programs and design appropriate research to monitor and 
control scale stability in CAT programs by using both 
simulations and, more importantly, observed data from 
live CAT administrations. This was the very intent of 
designing and conducting this study. 

The purpose of this study was to demonstrate design and 
analysis methods to examine the scale stability of a large-
scale operational CAT program by investigating the 
calibration and scaling of test items that were pretested 
online. GMAT® quantitative CAT measure data were 
used in this study. Specifically, using both real and  

simulated data, the study was to accomplish three 
objectives: (1) Develop a special online data collection 
method to study the scale stability, (2) Demonstrate a 
method of using simulations to establish an empirical 
baseline for evaluating differences, and (3) Apply this 
method to the GMAT® quantitative CAT measure for an 
evaluation of its scale stability. 

Methodology 

Figure 1 is a flowchart of the design for this study. The 
design started with the selection of 31 studied items (the 
items of interest in this study). Two waves of data were 
collected, one at Time Point One (T1) and the other at 
Time Point Two (T2). Two sets of items parameters at 
the two time points (T1 and T2) were calibrated and 
scaled. Then a modified root mean square difference was 
used to quantify the differences between the two sets of 
item parameter estimates. After that, a simulation study 
was performed to establish the baseline of random 
variation. Finally, the differences between T1 and T2 
items parameters were compared to the baseline to 
determine whether scale drift was observed.

 

Figure 1: Flowchart of the Design 
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Data Collection and Processing 

A special data collection method was designed to get 
appropriate item parameter information for the study. A 
group of 31 GMAT® quantitative items were identified, 
divided into four groups and used as our studied items. 
Each group of items was administered online to a random 
sample of GMAT® test takers. These items were then 
calibrated and scaled together with operational items to 
collect data at T1. About 20 months later, the same items 
were administered under the same conditions to collect 
the T2 data. This time interval was chosen according to 
the testing cycles of the GMAT® program. In both 
administrations, the items were administered linearly, 
imbedded in the CAT test operational items and then 
calibrated in PARSCALE (The Educational Testing 
Service internal version of Muraki & Bock (1999)) using 
an item-specific-prior method (Folk & Golub-Smith, 
1996; Guo, Stone & Cruz, 2001) to keep both 
calibrations on the same reference θ scale. If the group of 
studied items that were administered and calibrated in this 
manner showed no changes in their item parameters 
between T1 and T2, this would be taken as evidence of 
scale stability. In other words, this was like taking one 
snapshot of the reference θ scale at T1 and then another 
at T2, respectively. Any changes in the scale would be 
reflected in the item parameters derived at T2. 

However, the item parameters from T1 and T2 will not 
be identical, even if the scale remains stable during the 
period between T1 and T2. This is because item 
parameters from the calibrations are only estimates of 
their true parameters and calibration errors are included in 
the estimates. In order to allow evaluation of scale 
stability, we assume that any differences in the item 
parameters between the two calibrations can include both 
random variations (calibration and scaling errors) and 
variations due to scale drift:  

D = RV + SD  (1) 

where D, RV, and SD are for estimated difference, 
estimated random variations, and estimated scale drift, 
respectively. 

With observed data, it was not possible to separate true 
changes in item parameters, or a scale drift, from random 
variations. A simulation study was designed and 
implemented to estimate the magnitude of random 
variations, which served as a baseline. If differences in the 

item parameters from T1 and T2 were smaller than the 
baseline, they were taken as random variations only and no 
scale drift was observed. If they were beyond the probable 
sizes of random variations, it could be concluded that 
scale drift was observed. 

Simulation Study 

This simulation was to establish an empirical baseline for 
random variations as a result of calibration and scaling 
processes over time. GMAT® quantitative CAT measure 
was used as our example. All the item parameters, 
examinee theta, and examinees’ CAT responses were 
directly drawn from the GMAT® quantitative operational 
data. The simulation was conducted in the following 
steps: 

1. From the T1 operational examinee records 
(N = 169,111), ten random samples of 1,000 
examinees each were drawn without replacement.  

2. For each sample drawn, the 1,000 examinees’ θ values 
and the item parameters of the 31 studied items 
estimated from the T1 data were used to generate new 
item response vectors for the 1,000 examinees. 

3. The item parameters of the 31 studies were calibrated 
for each sample using the 1,000 examinees’ simulated 
item response vectors from step 2 together with the 
examinees’ responses to the operational CAT items in 
the T1 administration. This concurrent calibration 
with the operational items and their item-specific 
priors put the new item parameters on the same 
reference θ scale as the operational items as well as the 
T1 and T2 studied items. 

The rationale for the simulation is that, because the ability 
and item parameters from T1 were treated as true values 
and were used in generating item responses for item 
calibration in step 3, any differences in the calibration 
results from the 10 random samples can be attributed to 
random variations only. The results from the 10 simulated 
sample data can be used to establish an empirical baseline 
to estimate the degree of the random variation due to 
calibration and scaling processes. Ideally, a much larger 
number of random samples (say, 100 or more) could be 
used, which of course would be more time consuming and 
would require more resources. For this study of this new 
method, ten samples were more manageable and served the 
purpose of this study to explore the new method. 
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Analysis 

A modified root mean squared difference (RMSD) on test 
characteristic curves (TCC) was developed to quantify the 
differences in estimated item parameters at T1, T2, and 
the ten simulation results. The RMSD between two 
TCCs can be expressed as follows: 
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In this study, m = 81 as all the items were evaluated at 81 
points ranging from –4.0 to 4.0 in increments of 0.1. 

θP  is an item’s conditional probability of getting a correct 

answer, P(Xi = 1|θ, ai, bi, ci). θP  is on a 0-to-1 metric, 

whereas τ is on a 0-to-k metric for k dichotomously 
scored items. However, because the RMSDTCC in 
Formula (2) is on the 0-to-k metric, it is not convenient 
to compare RMSD values among different tests that have 
a different number of items. Formula (2) can be modified 
to standardize the RMSD calculation by k, the number of 
items, such that the RMSD is now on the same 0-to-1 
scale as θP . This is in effect an RMSD averaged over k 
items. In addition, population ability distribution can be 

included in calculating the TCC differences. Therefore, 
Formula (2) can be rewritten as: 
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where *P  = τ / k, a proportion of correct value; θW is 
the population weight at θ. 

This is what was used for RMSDTCC statistics for TCC 
comparisons between T1 and T2, as well as T1 and the 
ten simulation results. 

Results and Discussions 

Differences in TCCs 

Figure 2 displays the TCCs for T1, T2, and the ten 
simulations labeled H through Q. If there was any 
difference between T2 and T1 and the difference was 
really due to random variations from the calibration 
process, then the TCCs for T1 and T2 would be expected 
to be commingled with the ten simulated TCCs that 
reflect random fluctuations only. All the TCCs appear to 
be very close to one another with no one distinctly 
departing from the rest. This observation suggests that, if 
there were any differences between T2 and T1, the 
differences were very small and the differences could 
mainly be due to random variations.
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Figure 2: TCCs for the T1, T2 and the Ten Simulated Results 
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Upon closer examination of the TCCs, the T2 line 
appears to be above the other TCC lines across most part 
of the ability scale (roughly from –3 to 2.0, see Figures 3, 
4, and 5). At the 2.0 and higher part of the ability scale, 
the T2 line merges into the other lines. That the T2 line 
is consistently higher than the T1 line and the ten 
simulated lines over most of the scale does warrant a 
tentative conclusion that there was a difference between 

the T2 and the T1 lines and the difference could not be 
attributed to random variations only. Of course, this 
conclusion was based on visual judgments only and is not 
enough for the purpose of this study. The modified 
RMSD method was used to compare the statistics of the 
differences to determine if the differences would be 
meaningful.
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Figure 3: TCCs at the Lower Range of the Theta Scale 
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Figure 4: TCCs at the Middle Range of the Theta Scale 
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Figure 5: TCCs at the Upper Range of the Theta Scale 
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Additionally, the T1 line is found to be slightly above the 
ten simulated lines but below the T2 lines mainly between 
–3 to 0 on the ability scale. The difference between the 
T1 line and the ten simulated lines also appears to change 
directions with a slight clockwise shift. The T1 line is 
above the 10 simulated lines in the lower to middle part 
of the scale and shifts below the ten lines at the top part 
of the scale.  

Modified RMSD Results 

The modified RMSD statistics were calculated using 
Formula (3) for the TCC difference between T2 and T1 
and for the differences between each simulated TCC (H 
through Q) and the TCC for T1. Both unweighted and 
weighted RMSD can be computed, depending on whether 
population ability distributions need to be taken into 

consideration. With the unweighted RMSDs, the θW in 
Formula (3) was set to 1 for all θ points. In this study, 
only the unweighted RMSD method was used. 

The unweighted RMSDs for the TCC comparisons are 
depicted in Figure 6. The left-most column is RMSD 
value for T2 minus T1 (T2 – T1). Next to T2 – T1 is 
the average RMSD (AveHQ) for the 10 simulations 
minus T1. The RMSDs for the 10 individual simulations 
minus T1 (H – T1 to Q – T1) are also shown in the 
figure. No particular pattern is observed in the differences 
across the ten pairs from H – T1 to Q – T1. The average 
of the 10 RMSDs is 0.00819 and the range of the 10 
RMSDs covers from 0.006 (P – T1) to 0.012 (I – T1). 
The RMSD for T2 – T1 was 0.011 and was within the 
range of the 10 RMSDs that are used as the baseline.
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Figure 6: RMSD Statistics for T2 Minus T1 and the Ten Simulations Minus T1 
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While Figure 6 reveals some distributional characteristics 
of the RMSD in comparison with the T2 – T1 RMSD, 
the focus of interest, such information does not provide a 
means of assessing if the T2 – T1 RMSD can be 
considered within random variation or if it indicates some 
degrees of scale drift. To assess if an observed RMSD like 
that of T2 – T1 is due to random variation only or also 
due to scale shift, a cutoff point on the distribution of the 
RMSDs needs to be established. This distribution can be 
an empirical one since no theoretical one is available. This 

empirical distribution is the distribution of the RMSDs 
for the simulation results minus T1. In this study, it’s the 
distribution of the ten RMSDs. Figure 7 displays the ten 
RMSD values that were rounded to the third decimal 
place and the number of simulation results by the rounded 
RMSD value points. If a large number of simulations 
(100 or more) are run, the resulting distribution of the 
RMSD values will probably cover the whole RMSD scale 
and show a certain shape (maybe something resembling a 
χ2 distribution). 
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Figure 7: Empirical Distribution of the Ten RMSD Values 
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Regardless of the shape of the curve, a cut-off point can 
be selected as the criterion for evaluating an RMSD like 
that of T2 – T1. For example, a cut-off point can be set 
at the 95th or 90th percentile on the RMSD scale and a 
T2 – T1 RMSD is declared exhibiting evidence of scale 
drift if it falls beyond the cut-off point. Stated another 
way, the probability is around 0.05 or 0.1 for an RMSD 
value to be greater than the cut-off value when that 
RMSD is still due to random variation. This is the same 
logic as in statistical hypothesis testing. The application 
here may be expressed as follows: 

H0: T2 – T1 RMSD = random variation 

Ha: T2 – T1 RMSD > random variation. 

The only difference here from a formal statistical 
hypothesis testing is that no test statistic from a known 
theoretical distribution is used. Instead, the 95th or 90th 
percentile cut-off point is associated with the distribution 
of the RMSD values from simulation results. 

The distribution in Figure 7 can be used for this purpose 
even though there are only ten RMSD values. With the 
ten values, it is not possible to set a cut-off at the 95th 
percentile. Therefore the 90th percentile point is used as 
the cut-off for this example. The P – T1 RMSD is 0.012, 
the highest of the ten, and is the cut-off point below 
which an RMSD is considered as being within random 
variation. This is analogous to doing statistical hypothesis 
testing using an alpha level of 0.1. If a  
T2 – T1 RMSD falls in the 10% cut-off region, the H0 
is rejected and this RMSD is declared exhibiting scale 
drift. On the other hand, if an RMSD falls below the cut-
off point, the H0 is retained and the RMSD is considered 
due to random variation only. Since the T2 – T1 RMSD 
of 0.011 is smaller than the 0.012 cut-off RMSD value, 
the difference between T2 and T1 can be considered due 
to random variation in calibration and no evidence of scale 
drift in the GMAT® Quantitative measure is observed 
between T1 and T2. 
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Conclusions 

Scale stability is an important quality of a large-scale CAT 
program and should be maintained through research on 
scale drift evaluations in the CAT operations. Because any 
differences in the parameter estimates for the same items 
over time include both random variations due to 
calibration and systematic change due to scale drift, it is 
necessary to be able to disentangle the scale drift 
component of the total change from the random variation 
component. In this study, a special online data collection 
method was implemented and a modified root mean 
squared difference statistic was used to measure the 
difference in item parameters between the two time points. 
Then an empirical baseline was established using 
simulations for evaluating the difference. The result 
showed that scale drift was not detected in the GMAT® 
Quantitative measure and the observed differences 
between the two sets of item parameters calibrated at two 
time points were random variations. 

Because there is scarcely anything in the CAT literature on 
evaluating scale drift using both observed and simulated 
data, methods used in this study will make it possible for 
researchers to perform scale drift studies. For those who 
may want to use these methods, it is helpful to point out 
that this study focused on the methods themselves and 
that only ten simulations were conducted and each used 
only about 1,000 examinees. For a real evaluation of the 
scale drift in a CAT program, we have the following two 

recommendations. First, the number of simulation runs 
should be at least 100 in order to obtain an adequate 
sample of the simulation results for evaluation. Second, 
the simulation parameters should be the same as those in 
real pretest calibrations, such as the IRT model, sample 
size, calibration and scaling methods. This would yield 
more stable and realistic estimates of the parameters. 
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