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Abstract 

This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent 
item pools simultaneously, and compares the results from mixed integer programming (MIP). Three 
different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 
different content areas and a goal of equal information functions across pools and within each content 
area. The study addresses two important practical questions: (a) how many evaluation points should the 
objective functions of the MIP/MIQP models use when the targets have numerous non~N(0,1) 
distributions, and (b) how should the solver be structured when an item bank is gigantic? The study finds 
that all three MIP/MIQP models could be used effectively to construct highly parallel item pools and 
content bins when five evaluation points were used. Utilization of these techniques can replace current 
laborious manual pool construction methods. 

Introduction 

For long-term quality control of computerized adaptive 
testing (CAT) programs, it is crucial to construct and 
maintain quality item pools that are consistent over time 
in terms of their psychometric properties and their 
match to the ability distributions of the test takers. 
Regardless of the adaptive algorithm, consistency in 
pool quality is a necessary condition for consistency in 
the score accuracy for test takers.  

Construction of multiple parallel item pools is often 
challenging, however, because of the number of factors 
to be considered (e.g., bank information, content 
balancing, exposure rate, response time, etc.) and the 
limited number of items available in the item bank. In 
applied settings, the goal is often to maintain 
consistency in pool information functions across pools 
and to balance content in terms of the number of items 
within each content area in each pool. Item pool  

 
construction is usually performed manually using 
sampling techniques. Constructing multiple parallel 
item pools that meet all the pool specifications by hand, 
however, is very labor intensive, especially when there 
are numerous content constraints and the number of 
item pools to be constructed and/or the number of 
items for each pool is large. 

This study investigates the feasibility of using mixed 
integer programming (MIP) and mixed integer 
quadratic programming (MIQP) to construct multiple 
highly equivalent item pools that meet content, 
exposure, and psychometric constraints, including the 
goal that each content area should have the equivalent 
information functions across pools. The study explores 
three models using three different evaluation points in 
objective functions. The quality of the approaches is 
evaluated in terms of pool information function 
consistency and performance of the solver under each 
condition.  
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Mixed Integer Programming Models 

Various industries, from delivery services to financial 
institutions, have made wide use of linear programming 
(LP) models to optimize resources while maximizing 
outcomes. In the 1980s, the educational measurement 
field began adopting LP models for optimal test design 
for applications of automated test assembly (ATA; van 
der Linden, 2005). For ATA, the most common 
approach to LP is to introduce as many 0–1 binary 
variables as there are items in the bank, and then to let 
the solver software identify an optimal test design by 
finding the best combination of binary variables that 
will yield the maximum (or minimum depending on a 
problem) objective value (Theunissen, 1985). When 
multiple test forms are constructed at the same time, the 
LP often takes the form of network-flow programming, in 
which an array of integer variables (i × j) is determined 
in order to optimize the flows between i supply nodes 
and j demand nodes (Armstrong, Jones, & Wang, 1995; 
van der Linden, 1998). Because the decision variables 
of this LP model are integers, it is generally known as a 
mixed integer programming (MIP) model, and will be 
referred to as such in this paper. 

Item pool construction, the problem addressed in this 
paper, is not technically very different from an 
automated test assembly. Just as MIP models for ATA 
can be used to assemble the best sets of tests out of a 
given item pool, the MIP model can, in theory, also 
systematically assemble optimal sets of item pools. 
Ariel, Veldkamp, and van der Linden (2004) used the 
MIP model to optimally divide an item bank into 
multiple operational pools with similar content 
distributions. Van der Linden, Ariel, and Veldkamp 
(2006) discussed the formation of pools to meet the 
ability distributions of the targeted test takers while 
meeting content constraints. In practice, meeting 
content constraints, often a difficult task in itself, does 
not necessarily mean that the collection of test 
questions within a content area will meet the important 
goal of having similar information functions across 
pools.  

For CAT pool construction, whether done by hand or 
computer, it is more common to minimize the 
difference between an actually constructed item pool 
and a target, which often is determined by the  

 
examinee’s proficiency distribution. This can be 
modeled by evaluating the information function 
conditioned on θ: 
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where I(j|θ) is the item information for item j at θ, xj is 
a 0–1 variable representing the exclusion or inclusion of 
item j, and τθ is a target pool information function value 
at θ.  

When multiple item pools are constructed at once, the 
MIP model above can be modified as follows by 
summing across the P pools in the objective function 
and adding an additional constraint: 
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where p = 1, 2, 3, …, P with P being the number of item 
pools to be constructed at the same time and m being 
the maximum usage for each item across pools.  

Since the minimization of the objective function is 
limited by the constraint (Equation 6), this model will 
be referred to in this paper as the single bound model 
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(SBM). SBM is mathematically simple and very 
straightforward; there are many LP/MIP solvers that 
can handle such a model. The downside of SBM is that 
there is a fairly high chance of encountering infeasibility 
issues during the solving process if τ is not set to a very 
low value, especially when the values of J and m are 
small and/or the value of P is large. Readers interested 
in exploring SBM are referred to Cor, Alves, and Gierl 
(2009). 

If the likelihood of infeasibility issues with SBM appears 
moderate to severe, a different approach to modeling 
an MIP is often suggested. Infeasibility issues usually 
occur because of unrealistic settings for constraints. In 
practice, however, it is often impossible for 
practitioners to determine, before they attempt to solve 
the MIP model, whether constraints are unrealistic 
given the item bank data. Therefore it is useful to have 
an objective function that optimizes those constraints 
that restrict the worst difference between the target and 
actual pool information functions. This approach is 
called the minimax approach (van der Linden, 2005; van 
der Linden, & Boekkooi-Timminga, 1989). In the 
minimax approach, Equations 4 and 6 of the SBM 
above are replaced with 

 Minimize δ (8) 
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In contrast to the SBM, the MIP model applying the 
minimax approach allows the actual pool information 
function to be lower than the target pool information 
function, which significantly relieves possible 
infeasibility issues during the solving process. Unlike 
SBM, the differences between the target and actual pool 
information functions are controlled by the bands 
around the target, the width of which is 2δ. In this 
paper, this model will be referred to as the minimized 
band model (MBM).  

There are several issues to be resolved with MBM, 
however. First, the nature of the MBM, in which the 
constraints continuously change in each iteration, keeps 
the solver from effectively reducing the space of 
possible solutions using mathematical strategies. 
Another issue with the MBM is the fact that the 
bandwidth across θ is decided by a single δ. When τ is 
determined carefully throughout θ and the item bank is 
of sufficient size and quality, this generally should not 
pose a problem. If τ is unrealistically specified at a 
certain point on θ so that the difference between the 
actual pool information function and τ is unusually large 
at a given θ level, then it will result in δ which is 
unnecessarily too large for other θ levels. Therefore, 
with MBM, finding the minimized δ does not always 
guarantee the minimized overall difference between the 
actual pool information function and τ throughout θ. 

To overcome the problems associated with SBM and 
MBM, this study introduces a new objective function. 
In this approach, Equation 4 of the SBM is replaced 
with a quadratic term as 
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It should be noted that Equation 6 has been dropped 
from SBM because Equation 12 already is always above 
zero as the objective function is no longer linear but 
quadratic. Switching Equations 4 and 6 with Equation 
12 may seem a minor change, but this modification 
fundamentally changes the optimization in terms of the 
inherent conceptual and technical definitions. 
Compared with SBM, the elimination of the lower 
bound of the objective function (Equation 6) reduces 
the chance of encountering infeasibility issues. Also, 
unlike MBM, the difference between the actual pool 
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information function and τ is always minimized 
throughout θ. Henceforth, in this paper, this model will 
be referred to as the minimized squared difference model 
(MSDM). Although MSDM has several advantages over 
SBM and MBM, it has been used in the field only rarely 
because most LP solvers cannot handle such quadratic 
programming models. Only a few of the most advanced 
solvers recently developed can handle mixed integer 
quadratic programming (MIQP) problems under very 
limited conditions.  

The conceptual illustrations of SBM, MBM, and 
MSDM are shown in Figure 1. The reader should note 
the differences in the possible shapes of the constructed 
pool information functions. 

Purpose of Study 

The primary goal of this study is to compare the 
performance of the two different MIP models (SBM 
and MBM) and the MIQP model (MSDM) in 
constructing multiple parallel item pools. Before 
implementing these MIP/MIQP models, however, two 
important issues need to be addressed. 

The objective functions (Equations 4, 8, and 12) for 
item pool constructions are based on a continuous scale 
of θ with integrals. To make the objective function 
recognizable for the MIP solver and to reduce the 
intensity of mathematical computation, it is necessary 
to replace the integrals with summations of objective 
values across a few discrete evaluation points (i.e., 
quadrature points). For example, the objective function 
for SBM (Equation 4) is changed to 

 Minimize 
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where t = 1, 2, 3, …, T with T being the number of 
evaluation points (EP) on the θ scale, θt being the θ value 
at evaluation point t, and τt the target pool information 
function at θt. The same applies to MBM and MSDM. 
The first issue then is determining what the optimal 
number and locations of evaluation points are on the θ 
scale. Too few evaluation points would prevent tight 
control of the actual pool information function whereas 
too many evaluation points may unnecessarily and 
dramatically increase the solver processing time. Van 

der Linden (2005, p. 106) suggests that with an N(0,1) 
expected θ distribution, three or four evaluation points 
specified at -1.0, 0.0, +1.0 or -1.5, 0.5, 0.5, 1.5 will yield 
excellent results for a typical ATA. Practically speaking, 
however, for item pool construction, thetas do not 
remain N(0,1) and target difficulty is not N(0,1). While 
one could laboriously tailor the evaluation points for 
each pool, this study aims to determine a reasonable set 
of locations of evaluation points that can be universally 
applied for target information functions that may not 
closely follow N(0,1). 

The second critical part of the solving process is 
managing the size of MIP/MIQP problems to keep 
them under the usable computer resource limit. Unlike 
typical LP problems, MIP problems with 0–1 variables 
(for example, x in Equation 15) rely heavily on the 
branch-and-bound (BnB) algorithm (Land & Doig, 
1960) to implement the iterative tree search. The size of 
a solution space is defined by the number of possible 
combinations of the 0–1 variables. For example, if an 
ATA problem was to assemble a test form consisting of 
30 items selected from an item pool of 500 items, the 
size of the solution space for the problem would be 

 48500 500! 1.445 .
30 30!(500 30)!

e 
= ≅  − 

 (16) 

 
Although 1.445E + 48 is large, many solvers can 
effectively reduce the problem size by eliminating 
infeasible solutions (according to the constraints) and 
skipping (or cutting) unpromising solutions using 
various mathematical strategies. With CAT pool 
construction, however, the size of a solution space can 
become unmanageable. For example, if 12 parallel item 
pools (500 items per pool) were constructed from an 
item bank with 10,000 items, the solution space would 
be 

292010000 (10000)! 5.794 .
500 12 6000!(10000 6000)!

e 
= ≅ × − 

 

(17) 

Only a handful of advanced, high-performance solvers 
could theoretically manage the computer resources 
(memory and storage) needed to handle such an 
enormous MIP/MIQP problem. Assuming the 
problem could be solved, it is unknown whether an 
advanced solver would be able to finish the solving 
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Figure 1. Three Optimization Models (Excluding Constraints for Item Exposure Control) 
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process within a realistic time frame. Therefore, in this 
study, item pool construction is performed in two 
different ways. In the first method, a whole item bank 
is modeled using MIP/MIQP using an advanced solver. 
In the second method, the item bank is divided into 
subgroups first, followed by implementation of the 
MIP/MIQP models. The performance of the solver 
when the problem tree is astronomically large is 
evaluated by comparing the two methods. 

Once these two research questions are addressed, the 
three MIP/MIQP models are compared and evaluated. 
A comprehensive discussion of the study findings 
draws important guidelines for item pool construction 
using MIP/MIQP techniques. 

Method 

Pool Specification 

For this study, 12,000 quantitative items were randomly 
selected from the Graduate Management Admission 
Test® (GMAT®) item bank (i.e. master pool). This study 
used a scenario1 in which 12 item pools had to be 
constructed to meet the following realistic 
requirements:  

1. Each item pool must consist of items from 23 
mutually exclusive combinations of content areas, 
cognitive skills, and application levels (in this paper, 
the combinations are simply referred to as content 
area, and the mutually exclusive collections of items 
within a content area are referred to as bins); 

2. The number of items for each content area is equal 
to a prespecified value, nkp, (k being an index for 
each content area); 

3. An item cannot be included in more than two of the 
12 pools; and 

4. An item cannot be included in more than 1 of 4 
consecutive pools. 

The number of available items for each content area 
(Nkp) in the item bank ranged between 233 and 938, and 
the prespecified number of items for each content area 
(nkp) per item pool ranged between 27 and 40. The 

1 This is a hypothetical scenario. The pool specifications and 
constraints are not those of the operational GMAT exam.  

distribution of item difficulties within each of the pools 
deviates greatly from N(0,1) 

Models 

The four aforementioned pool requirements were 
added as constraints into SBM, MBM, and MSDM. For 
the content area component, Cjk, a matrix of 0–1 
constants that indicates the content area of each item, 
was added to the models, in which 

1   if item  belongs to content area 
0  otherwise.                                     jk

j k
C 

= 
  

(18) 

 
For example, the final SBM model could be expressed 
as, 
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To find the optimal number and location of the 
evaluation points on the θ scale, three different 
combinations of number and location were attempted: 
1 (θ = 0), 3 (θ = -2, 0, and 2), and 5 evaluation points (θ 
= -2, -1, 0, 1, and 2). The analysis thus consists of the 
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following: P = 12 pools to be created, J = 12,000 items 
in the bank, and K = 23 content areas. We will evaluate 
T = 1, 3, and 5 evaluation points. 

As a baseline, 12 pools were constructed manually using 
sampling techniques. In this manual construction, the 
mean and standard deviations (SD) of a- and b-
parameters of each pool were matched to other item 
pools and the maximum information was targeted at 
about θ = 0.85. The manually constructed item pools 
were compared with the item pools constructed using 
the MIP/MIQP optimization.  

Implementation  

As MIP/MIQP models, SBM, MBM, and MSDM were 
built using the optimization modeling software, 
AIMMS 3.10FR2 64-bit edition (www.aimms.com) and 
one of its most advanced solvers, CPLEX 12.1 
(www.cplex.com), which could handle both MIP and 
MIQP. To ensure that the objective functions under the 
different evaluation point conditions were comparable, 
each of the objective functions was divided by the 
number of evaluation points. The relative optimality 
tolerance was set to 5% of best LP bounds, for all three 
models. To expedite the iterative process of the BnB 
algorithm, the cutoff criteria for SBM, MBM, and 
MSDM were set to about twice the size of the 
corresponding absolute optimality tolerances, which 
were derived from the relative tolerance values, based 
on the results from multiple preliminary runs. A best-
estimate strategy was used in the node selection to start 
from a node after all infeasible integer solutions were 
removed. The study also employed strong branching, in 
which the variable selections were based on partially 
solving a number of subproblems to see which branch 
was the most promising, because this approach is 
known to be very effective on large optimization 
problems. The solver was set to run in the parallel 
thread mode using all available CPU cores.  

As mentioned earlier, this study employed two different 
means of implementation. First, the item bank (N = 
12,000) was divided into 23 mutually exclusive content 
subgroups. Then the solving process was performed for 
each of the 23 subgroups (i.e., 23 separate runs of the 
solver). In the second implementation method, the 
solver was set with the goal of determining all 144,000 
binary variables (the p × j matrix of x’s, where P = 12 

and J = 12,000) to construct 12 item pools with all 23 
content areas at once.  

The computer system used for the solving process was 
a virtual machine built on Microsoft® Windows® Server 
2003 64-bit edition with a dedicated Intel® Zeon CPU 
with four cores running at 2.80 GHz. The computer 
had 16 GB of physical memory. On a practical note, it 
is advisable to use a 64-bit operating system in order to 
avoid system crashes associated with the memory 
management when the MIP/MIQP problem is very 
large and parallel thread running is required.  

Results 

The pool information functions of the 12 manually 
constructed item pools are shown in Figure 2. Although 
the pool information functions across the 12 item pools 
differed slightly in where they peaked, the overall shapes 
of the pool information functions were quite similar. 
When we examined the information functions at the 
item bin level (i.e., subgroups by content area), 
however, the information functions across the pools 
within each bin were inconsistent. For example, as 
shown in Figure 3, the information functions for Bins 
6 and 9 differed in their peak points by about 200% 
between some pools. For Bins 16 and 17, the overall 
shapes of the bin information functions varied greatly 
from one pool to another. In sum, manual item pool 
construction using the sampling technique matching the 
mean and standard deviation of item parameter values 
across item pools results in an acceptable level of 
consistency in pool information function at the pool 
level. At the lower level (i.e., item bin or item content 
area), however, the item bin quality might be 
inconsistent across item pools (or over time). Item 
pools constructed manually in this manner have been 
acceptable to test developers performing real-world 
applications. It is undeniable, however, that the 
inconsistency in the psychometric properties among the 
item pools when the pools were manually constructed 
posed a far from ideal result, leaving much room for 
improvement. 

The item pool constructions using the MIP/MIQP 
optimization-based SBM, MBM, and MSDM were 
conducted next and the information functions of these 
item pools at the item pool level are shown in Figure 4. 
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Figure 2. Pool Information Functions of 12 Manually Constructed Item Pools 

 
When the objective functions were controlled at one 
evaluation point (1EP; θ = 0), the pool information 
functions of the item pools emulated those seen in the 
manual construction cases in Figure 3. In addition, the 
pool information functions of most of the item pools 
in the 1EP condition tended to exceed the target where 
θ > 1. When the objective functions were controlled at 
three evaluation points with two standard deviation 
intervals (3EP; θ = -2, 0, and 2), the MBM model 
yielded the most consistent pool information functions 
across the 12 pools. The pool information functions in 
the 3EP condition tended to be closer to the target than 
those in the one-evaluation point condition; however, 
with SBM and MSDM, many pools showed pool 
information functions lower than the target where the 
pool information functions peaked around 0 < θ < 2. 

Also, it should be noted that the information functions 
were not tightly controlled at the middle of the 
distribution (e.g., -1 and 1). When the objective 
functions were controlled at five evaluation points 
(5EP; θ = -2, -1, 0, 1, and 2), pool information functions 
of the 12 pools were on top of each other as well as 
right on the target throughout θ with all three 
MIP/MIQP models. This represents a dramatic 
improvement over the manual pool construction 
(Figure 1) in terms of quality control of item pool 
construction. Based on the results of the one-, three-, 
and five-evaluation point conditions in this study, it is 
reasonable to conclude, as practical suggestions that: (a) 
the objective functions should be evaluated where the 
pool information functions are expected to peak, (b) the 
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Figure 3. Bin Information Functions of 12 Manually Constructed Item Pools  

interval of evaluation points should be one standard 
deviation or less, and (c) there should be at least five 
evaluation points to control the objective functions 
effectively throughout a wide range of θ.  

Although the results show that the information 
functions of the 12 pools were controlled effectively at 
the pool level with the five evaluation points, it is still 

crucial to examine the consistency of the 12 item pools 
at the critical item bin level because, as seen in Figure 3, 
consistency in pool information does not necessarily 
translate to consistency in information functions at the 
content or bin level, even if the items are drawn from 
these mutually exclusive bins. Figures 5, 6, and 7 show 
the bin information functions of the item pools  
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Figure 4. Information Functions of 12 Pools Constructed by Three Models at the Pool Level 
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constructed by SBM, MBM, and MSDM, respectively.2 
With three or fewer evaluation points, bin information 
functions often differ substantially from the target as 
well among the 12 pools. With five evaluation points, 
bin information functions were right on target across 
the 12 pools within each content area. In a few cases, 
the 12 pools differed from each other within each bin 
when θ > 2, but the differences observed were 
negligible. Overall observations on the bin information 
functions led to the conclusion that evaluation of the 
objective functions on the five evaluation points 
effectively controlled the information at the item bin 
level as well as at the item pool level. In this study, there 
were no meaningful differences among any of the 
MIP/MIQP models in terms of quality of the 

constructed item pools. The carefully chosen targets (τ) 
were well supported by the large item bank and the 
overlap constraints were achievable. In terms of the 
time required to perform the solving processes, 
however, there were substantial differences among 
SBM, MBM, and MSDM as shown in Table 1. When 
the objective functions were evaluated at one evaluation 
point (1EP), the solver with the MBM objective 
performed the fastest. The average processing time 
across 23 runs (for 23 item bins, with 12 pools for each 
bin) was nine seconds. In the 3EP condition with the 
SBM and MBM, processing time increased compared 
with the 1EP condition, but the MBM still resulted in 
the shortest processing time.

 

2 Results only for Bins 6, 9, 16, and 17 were reported due to space 
limitations, but results for other bins are available from the first 
author upon request. 

© 2014 Graduate Management Admission Council®. All rights reserved. 10 

                                                 



 Item Pool Construction Using MIQP, Han & Rudner 

Table 1. Processing Time (in Seconds) and Final Objective Value for Each MIP/MIQP Model 
Model Number of Evaluation Points Time Objective Value 

SBM 
1 57 (37.75) 0.478 (0.07) 
3 639 (461.49) 0.491 (0.04) 
5 921 (629.03) 0.510 (0.03) 

MBM 
1 9 (6.72) 0.037 (0.01) 
3 80 (67.92) 0.042 (0.00) 
5 2868 (3433.47) 0.044 (0.00) 

MSDM 
1 791 (540.09) 0.018 (0.00) 
3 487 (311.61) 0.017 (0.01) 
5 1106 (726.62) 0.021 (0.00) 

Note: Two stop criteria were used for the solving process: (a) CPU time (10,000 sec) or (b) objective value with relative tolerance. 

Under the 5EP condition, which resulted in near 
optimal pools and bins, the processing time for MBM 
jumped to an average of 2,868 seconds (47.8 minutes), 
and 3 out of the total of 23 runs could not finish within 
the time limit (10,000 seconds or 166.6 minutes) even 
though the objective function values of those three runs 
were close to absolute optimality tolerance. For the 5EP 
condition, the SBM model took the shortest length of 
time to solve, with an average of 921 seconds or 
approximately 16 minutes.  

MSDM took the longest time to solve when there was 
only one evaluation point, but interestingly, compared 
with the other models, MSDM processing time did not 
necessarily increase as the number of evaluation points 
increased. The tendency for processing times to be 
influenced by the number of evaluation points and 
choice of MIP/MIQP models does not lend itself 
directly to generalization; however, overall processing 
times reported were informative enough to help choose 
the best MIP/MIQP models based on the number of 
evaluation points considered. In fact, regarding the 
person-hours typically required for manual 
construction, the processing time with any of the three 
MIP/MIQP models was extremely fast and the 
differences among the models in term of processing 
time were of no practical significance.  

A simultaneous solving, where all 23 bins (each with 12 
pools) were constructed at the same time, was also 
attempted to determine whether the solver could still 

solve the different MIP/MIQP models effectively given 
an extremely large problem size. With SBM and 
MSDM, the solver falsely concluded that there was no 
feasible solution after the presolving process. When 
MBM was used, the solver ran until the solving process 
was forcedly terminated when it ran out of computer 
resource after 1,219,846 seconds (more than two weeks) 
of running (1,964,920 nodes explored). The 
minimization objective function value of 13.820 was the 
best solution found after two weeks. This is far greater 
than the sum of the objective values from the 23 
separate runs (0.904) in the 5EP condition.  

Discussion and Conclusion 
This study addressed three important research goals 
related to item pool construction using MIP/MIQP 
techniques. The first goal concerned identifying how 
many evaluation points were needed to control 
information functions effectively at both the item pool 
level and the item bin (i.e., content area) level regardless 
of the distributions of information within each bin. In 
the studied condition, where the information function 
between -2 and 2 of the θ scale was of the most interest, 
at least five evaluation points were required to control 
the information function effectively across all the bins. 
The evaluation points did not have to be equidistant, 
but study findings suggested that the intervals between 
evaluation points should be one standard deviation or 
less. If the information functions need to be controlled 
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Figure 5. Bin Information Functions for 12 Pools Constructed With SBM (MIP) 
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Figure 6. Bin Information Functions for 12 Pools Constructed With MBM (MIP) 
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Figure 7. Bin Information Functions for 12 Pools Constructed With MSDM (MIQP) 
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for a wider range on the θ scale, then more evaluation 
points would be required. One could tailor evaluation 
points to each content area and possibly use fewer 
evaluation points. Setting evaluation points of -2, -1, 0, 
1, and 2 worked well, however, regardless of target 
shapes. 

This study’s second research goal was to determine 
whether one of the most recently developed solvers 
could handle the construction of large multiple item 
pools simultaneously. Under the studied condition, 
where 12 item pools were constructed from an item 
bank of 12,000 items, some of the solvers could not 
even reach the actual solving stage. Even when the 
solving process was successfully initiated, few optimal 
solutions were found within a realistic processing time 
setting; yielding an unsatisfactory outcome. On the 
other hand, when the item bank was broken into smaller 
mutually exclusive subgroups (each with fewer than 
1,000 available items to choose from), the solvers were 
able to find near-optimal solutions for constructing 12 
item pools within an hour, except for a few cases with 
the MBM. Thus, it is advisable to stratify the item bank 
and item pools into mutually exclusive, smaller 
subgroups whenever possible. If stratifying the item 
bank is not feasible and the item bank is huge, other 
approaches such as van der Linden’s big-shadow-test 
approach (2005) or sequential solving (constructing one 
item pool with each run) might be used to reduce the 
size of the problem tree. Note, however, that such 
approaches could compromise the level of optimization 
across the item pools. 

The last research objective—and the main concern of 
this study—was to compare the performances of the 
SBM, MBM, and MSDM models in item pool 
construction. When the target was carefully established 
and the item bank had a capacity to fully support the 
target, all three MIP/MIQP models proved to be 
feasible and effective in item pool construction with 
five evaluation points. It bears repeating, however, that 
this study involved the use of an item bank with a total 
of 12,000 available items, a size large enough to avoid 

infeasibility issues. When fewer items are available, then 
MSDM might be a more preferable choice over the 
other MIP models because MSDM usually has fewer 
constraints than the comparable SBM, meaning it is less 
likely to encounter infeasibility issues. MSDM seeks the 
most optimal solution at each of the EP levels, whereas 
MBM’s best solution is not necessarily the most optimal 
at each EP. For more information about potential 
differences in performance among the models when an 
item bank is insufficient for fully supporting a target 
(i.e., when an item bank is deficient), see Appendix A. 

Depending on choice of item selection method, item 
exposure control, and other adaptive algorithms, item 
pool quality may not directly influence CAT 
administration for every single test taker at any given 
time. Presuming, however, that an entire item pool is 
managed to be evenly utilized, consistency of item pool 
quality across the constructed item pools would, in the 
long run, become one of the most important factors in 
deciding the quality of the measure itself. Therefore, it 
cannot be overstated that the dramatic improvement 
seen in item pool construction with the MIP/MIQP 
technique also would be a significant step forward in 
ensuring the test validity.  

Contact Information 
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Research and Development Department at 
research@gmac.com. 
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Appendix A 

Cases With a Deficient Item Bank 

The study revealed that the three MIP/MIQP models 
were effective in constructing item pools when: (a) the 
objective functions based on target information 
functions were carefully established, and (b) the item 
bank had a sufficient number of items available to 
support feasible solutions. In reality, however, issues of 
infeasibility arise frequently. As Huizing, Veldkamp, 
and Verschoor (2005) pointed out, there are two main 
reasons for infeasibility: a contradiction between the 
demands and/or a deficient item bank. A contradiction 
between demands in a mathematical model usually is 
easy to identify and fix. On the other hand, determining 
whether or not the item bank is deficient before actually 
attempting item pool construction can be extremely 
challenging in practice. For this reason, the SBM, MBM, 
and MSDM were compared under the condition of a 
deficient item bank.  

Item Bank and Pool Specification 

A total of 3,000 items were selected from the GMAT 
exam item bank for the quantitative section. The item 
pool consisted of 10 bins defined by five content areas 
and two cognitive skills. To render the item bank 
insufficient for meeting all item pool specifications, the 
information targets for some bins were set intentionally 
higher than what the item bank actually could support. 
All other conditions and constraints, including item 
exposure restrictions, remained the same as in the 
earlier analysis. SBM, MBM, and MSDM (models) were 
used to construct 10 parallel item pools, and objective 
functions were evaluated at five evaluation points (-2, -
1, 0, 1, and 2). The solver was set to construct 10 parallel 
pools for all 10 bins at once. Because indeterminacy 
(i.e., failing to find a single, absolutely optimal solution) 
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was likely, a time limit of 10,000 seconds (167 minutes) 
was established.  

Different Behaviors of SBM, MBM, and MSDM 

During the presolving process using SBM, the solver 
discovered there was no feasible solution for item pool 
construction and stopped running. This came as no 
surprise since the item bank was set intentionally to be 
insufficient for satisfying the target information 
constraint (the lower bound of the SBM seen in 
Equation 6) for the study. Knowing an item bank is 
deficient, test developers can consider possible 
approaches to fix the infeasibility issue, for example, by 
adding more items, replacing items with newer ones 
with higher information at problematic proficiency 
areas, and/or making the target information more 
realistic. In practice, however, identifying the exact 
reason for an infeasibility issue is extremely challenging, 
especially when there are numerous constraints and the 
item pool structure is complex. The shortcoming of the 
SBM, therefore, is not only its incapacity to solve but 
also its inability to produce useful information to fix 
infeasibility issues when faced with a deficient item 
bank. 

When the MBM was used for item pool construction, 
the solver, within the time limit, successfully found an 
acceptable solution in which the difference between the 
linear optimum and the actual integer solution was less 
than 5%. The differences in bin information functions 
among the 10 constructed pools and the target are 
reported in Figure A.1. As shown in Figure A.1, the 
constructed item pools for Bins 5, 6, 7, and 8 were 
nearly parallel and right on target in terms of bin 
information. For the other bins, however, the bin 
information functions of the constructed item pools 
exhibited obvious differences from the targets. Based 
on the MBM results, it was easy to identify which bins 
were problematic. Examining each of the problematic 

bins, however, it was difficult to determine the exact 
cause of the problem. For Bin 3, for instance, all pools 
showed information functions that were below the 
target at -2, whereas all pools well exceeded the target 
at 0. Also, at evaluation points 1 and 2, there were larger 
variances in information functions across pools. Thus, 
while the results from the MBM seemed to be useful for 
identifying the item bins for which the item bank was 
deficient, they were not specific enough to pinpoint the 
problematic areas across evaluation points.  

With the MSDM, the results showed that 10 
constructed pools were nearly parallel to each other 
across bins and evaluation points. As displayed in 
Figure A.2, the 10 item pools showed identical bin 
information functions at every evaluation point even 
where the item bank capacity was not satisfying the 
target information. It is important to note that the 
differences in bin information function between the 
constructed pools and the target were minimized at 
each evaluation point with the MSDM. With Bin 3, for 
example the bin information functions were 
substantially off the target at θ = 1 and 2 with the MBM 
(Figure A.1), while the MSDM resulted in the 10 parallel 
pools that were right on the target at the same 
evaluation points. In sum, this example clearly shows 
the benefits of using the MSDM for item pool 
construction when an item bank is potentially deficient. 
First, because the squared differences between a target 
and constructed item pools are always minimized at 
every evaluation point, the MSDM effectively 
constructs multiple parallel pools even if a target is 
unrealistic. Second, with the MSDM, problematic areas 
across bins and evaluation points are clearly revealed. 
Thus, test developers can determine effective changes 
on the target and/or items in the bank to relieve the 
item bank deficiency issue without iterative trial-and-
error processes. 
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Figure A.1. Pool Information Functions for 10 Pools Constructed With MBM (MIP) 
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Figure A.2. Pool Information Functions for 10 Pools Constructed With MSDM (MIQP) 
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