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Abstract 

This study presents a new adaptive multistage testing method that replaces the preassembled test 
module with a test module assembled on the fly after each stage. In this method, a test module for each 
stage is shaped to come as close as possible to the normal density function of the interim proficiency 
estimate and its standard error. We will hereafter call the new method ‘multistage test by shaping’ 
(MST-S) and refer to the traditional multistage test as MST by routing (MST-R). The new MST-S offers 
the advantages of both MST-R and computerized adaptive testing (CAT). With MST-S, the difficulty of 
a test module always centers on the latest interim proficiency estimate, which means it potentially can 
administer a test module that is more efficiently adapted to the individual compared with MST-R. 
Because test items are not necessarily limited to a certain stage but instead are available for use in any 
stage, the number of items required to implement MST-S can be much smaller than those required in 
MST-R. If desired, MST-S also can allow examinees to move back and forth within each module, as 
they can do now in MST-R. This study consists of a series of simulation studies that were conducted to 
evaluate the performance of MST-S in comparison with MST-R and CAT.  
 

Introduction 

With the emergence of item response theory and the 
rapid advancement of computer technology, 
computerized adaptive testing (CAT) is being used 
widely in a variety of testing applications across fields 
ranging from education to health and medicine. Unlike 
a test with a fixed form (for example, a paper-and-
pencil exam), CAT assembles tests at the item level, 
achieving optimized measurement efficiency by 
administering each item that is the most relevant to 
each individual’s proficiency level (Weiss, 1974). 
Numerous tools and techniques have been developed 
to implement CAT that meet important statistical 
and/or nonstatistical targets and constraints often 
including—but not limited to—measurement 
accuracy, item exposure rate, content balancing, test 
length, and item latency.  

Multistage testing, or MST, was developed as an 
alternative to CAT for applications where it is 
preferable to administer a test at the level of a pre-
assembled item set (i.e., module; Luecht & Nungester, 
1998). One of the downsides of MST, however, is that 
the pre-assembled item sets may not be optimized to 
result in the best measurement efficiency at each stage 
(Lord, 1980; Zenisky, Hambleton, & Luecht, 2010). 
This study presents a new adaptive multistage testing 
method that assembles an optimized test module on 
the fly after each stage rather than relying on 
preassembled test modules. 

Multistage Testing 

As its name implies, a multistage test (MST) is divided 
into multiple stages and adaptively administered for 
each stage with a module whose difficulty level is the 
closest to examinee’s expected proficiency.  
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Figure 1, for example, shows some typical structures 
of MST. In this example, the test was divided into 
three stages, with one module in the first stage and 
three modules in each of the second and third stages. 
Such a design often is referred to as the “1-3-3” 
module design (Luecht, Brumfield, & Breithaupt, 
2006; Jodoin, Zenisky, & Hambleton, 2006). In this 
design, an examinee starts with the first stage, whose 
item module difficulty level is usually medium or 
average. After the first stage, the examinee is routed to 
one of the three preassembled item modules in the 

second stage based on his or her performance in the 
first stage. After completing the second stage, the 
examinee is again routed to one of the three item 
modules in the third stage. Thus, MST behaves 
essentially like a special case of CAT, which adaptively 
routs each test taker to one of several preassembled 
item groups based on his or her performance on the 
previously administered items. In the same respect, a 
typical CAT also can be regarded as a special case of 
MST, in which each stage consists of a single item and 
items are not tied to a single specific stage.

 

Figure 1 Illustrations of Multistage Testing 
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Administering a group of fixed items at one time 
rather than administering items individually could have 
some advantages depending on the test situation. For 
example, some tests consist of item sets, reading 
passages for example, that contain commonly shared 
content. In these instances, it would be appropriate to 
administer such an item set at one time as a module to 
avoid possible complications with item dependency 
and enemy management. Also, because the structure 
of stages, the placement of modules, and the 
composition of items within each module are almost 
always predetermined before the test administration, 
MST often offers more controls over the details of test 
specifications and properties. Another advantage of 
MST in comparison with CAT is that it places a 
smaller burden on client computers in terms of the 
item selection process. With MST, a client computer 
needs only to compute interim proficiency estimates 
after each stage instead of after each item. The 
computational workload for the selection algorithm is 
much simpler in MST, as well, because it considers 
only a handful of item modules as opposed to 
choosing from among hundreds of individual items. 
More important, examinees often prefer MST because 
it usually, if not always, allows them to move back and 
forth across items and change their initial responses 
within each module, unlike CAT, which prevents 
examinees from moving back once they submit their 
responses. 

MST does have its downsides, however, such as a 
substantial tradeoff in the level of adaptability, which 
may eventually have a negative impact on the 
measurement efficiency. By increasing the number of 
stages, MST’s adaptability could be improved; 
however, it would require considerably more items to 
build an MST with many stages compared with CAT 
for the simple reason that in MST, item modules are 
designed for use only in one specific stage. Item 
modules in one stage cannot be considered for 
selection in another even if they meet all other 
requirements.  

Another major drawback of MST is the inconsistency 
in final test information function (TIF) within and/or 
across proficiency levels. When modules are 
preassembled in MST, the information function level 
across modules for each stage is usually controlled to 
be consistent regardless of examinee proficiency level. 

For example, as shown in the bottom of Figure 1, the 
information functions for modules in Stages 2 and 3 
have similar shapes (except for the easy module for 
Stage 3, which shows higher information function in 
the lower proficiency area), differing only where the 
module information functions peak. Assembling item 
modules that have information functions with similar 
shapes usually requires use of sophisticated 
optimization techniques such as mixed integer 
programming (van der Linden, 2005; Melican, 
Breithaupt, & Zhang, 2010; Breithaupt, Ariel, & Hare, 
2010; Zenisky et al., 2010). Constructing item modules 
with similar information function shapes for each 
stage is often considered important because it would 
help maintain consistency of the information function 
contributed by a selected item module regardless of 
the module choice at any stage of testing. There is no 
guarantee, however, that this will result in final TIFs 
that are consistent across examinees who were routed 
to different modules throughout the test. For example, 
Figure 2 shows the final TIFs from all possible routes 
and module combinations that were shown in Figure 
1. For examinees whose proficiency level was -2.0 and 
who were routed to ‘1-E-E’ (easy modules at the 
second and third stages after the first stage) modules, 
the final TIF was about 32.5. For examinees with the 
same proficiency level (= -2.0) who took different 
routes, for example, ‘1-E-M’ or ‘1-M-E,’ the final TIF 
was about 21 or lower. This is about a 30% difference 
in TIF for the same proficiency level, possibly large 
enough to raise a flag about test reliability control 
issues across examinees in some testing programs. 
Higher proficiency levels showed similar 
observations—compare ‘1-M-M’ to ‘1-E-M,’ ‘1-H-M,’ 
‘1-M-E,’ or ‘1-M-H’ at θ = 0 and ‘1-H-H’ to ‘1-E-H,’ 
‘1-M-H,’ ‘1-H-E,’ or ‘1-H-M’ at θ = 2. Although the 
choice of module difficulty tends to stay the same 
across stages for a majority of examinees (the solid 
curves in Figure 2), a significant number of examinees 
would still unavoidably end up with much lowers TIFs 
as a result of being routed to modules with different 
difficulty levels during the test (dot curves in Figure 2). 
Plus, it would still be common to observe substantial 
fluctuations in TIFs across proficiency levels even 
among the examinees who took the same route of 
modules. For example, in Figure 2, the TIF for 
examinees at the proficiency level of 1.0 who took the 
‘1-M-M’ route was less than 60% of the proficiency 
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level observed for examinees at θ = 0 who took the 
same ‘1-M-M’ route. It is thus apparent that the TIF 
and the standard errors of estimation in MST often 
seriously differ across examinees with different 
proficiency levels and also could substantially differ 

even across examinees with the same proficiency level 
if they were routed to different paths of test modules, 
which may introduce a huge challenge in controlling 
the test reliability across examinees.  

 
Figure 2. Example of Inconsistent Test Information Function (TIF)  

Across Different Routes & Proficiency Levels 

 
 

Another problem of MST occurs when an interim 
proficiency estimate is very close to the cut score. 
Depending which test module routing is decided for a 
following stage, there is a considerable likelihood that 
the module selected for the next stage will be less than 
optimal. This can be problematic especially when an 
interim proficiency estimate is unreliable and showing 
large standard errors of estimation during earlier stages 
of MST. Such a problem becomes even more serious 
when there are fewer modules at each stage and 
insufficient overlap between modules in term of item 
difficulty.  

Individual test programs with differing MST designs 
often have completely different psychometric 
properties, so it is important to understand that the 

aforementioned advantages and disadvantages of MST 
do not necessarily generalize to all test programs that 
use MST. Despite the distinct advantages that MST 
offers, the need to use preassembled modules in many 
MST designs clearly makes it challenging to control 
TIFs.  

MST by Shaping  

The goal of this study was to present a new approach 
to MST that addresses the challenges of MST in 
controlling TIFs and finds ways to use items with 
improved adaptability while retaining the advantages 
of traditional MST designs, such as allowing examinees 
to move back and forth within a stage and increasing 
emphasis on nonstatistical specifications. 
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The proposed MST method does not select 
preassembled test modules. Instead, it assembles a test 
module ‘on the fly’ after each stage, using the 
following steps to assemble the new item module for 
the next stage: 

1. Evaluate TIF and estimate an interim θ based on 
items administered thus far, 

2. Evaluate the difference between the current TIF 
and target TIF for the next stage at the interim θ, 

3. Construct a TIF mold, a new term to describe an 
ideal shape for the information function of the 
next item module (excluding previously 
administered modules) based on Step 2, 

4. Shape an item module based on the mold in 
Step 3, 

5. Administer the item module that was shaped in 
Step 4, and 

6. Repeat Steps 1 to 5 until the last stage finishes. 

Examples shown in Figure 3 illustrate these five steps. 
Step 1 of Figure 3 pictures a situation in which MST 
builds an item module for the third stage of a 
multistage test. The TIF and the interim θ estimate 
were computed after completion of the second test 
stage. In Step 2, the new MST method computes the 
difference between the current TIF (black solid curve) 
and the target TIF (gray dashed curve) that is centered 
on the interim θ estimate (red solid line). Test 
developers predetermine the target TIFs for each stage 
but the targets TIFs only dictate the shape of the TIF, 
not the location of the peak. In Step 3, the area 
difference in TIFs is directly translated into a TIF 
mold (shaded area) for the next stage. In Step 4, the 
new MST method selects a group of items for the 
purpose of shaping an item module with a TIF that 
resembles, as closely as possible, the mold created in 
Step 3. For the shaping step, the content balancing 
component is considered first. According to the test 
specification for each stage, the number of items 
needed for each content area is determined next. 
Module shaping, which involves iterative item 
selection processes, then begins, filling the item needs 
for each content area. The details of the module-
shaping algorithm come next. 

In typical CAT programs, the item selection algorithm 
looks for the best item based on the item selection 

criterion and then introduces a random factor to 
control exposure rate. For example, some CAT 
programs will use the maximum Fisher information 
criterion to choose an item that results in the highest 
Fisher information at the interim θ estimate, and then 
will apply the Sympson and Hetter (1985) method or 
conditional/unconditional multinomial methods 
(Stocking & Lewis, 1995, 1998), which ultimately 
introduce a huge random factor to control the 
probability of administering the selected items. For the 
exposure control in conventional MST applications, it 
is common for MST developers to build multiple 
equivalent panels—a set of modules with routing rules. 
Examinees are randomly assigned to one of the panels 
(Luecht et al., 2006), so the test exposure rate is 
controlled to be 1/k with k being the number of 
panels. The new MST method was developed with a 
built-in exposure control feature in the module-
shaping algorithm. In opposite to typical CAT 
algorithms that first seek the best item and then 
introduce another random factor for exposure control, 
the new MST module-shaping algorithm begins with a 
random selection of items. According to the identified 
number of items needed for each content area in the 
next stage, the MST method then randomly draws 
eligible items from the item bank. Once the initial 
random drawing of items is finished, the iterative 
shaping routines begin. Each iteration of the module-
shaping routine consists of following processes: 

1. Assess the squared area difference between the 
current set of items (from the initial random 
drawing if it is the first iteration of the module 
shaping) and the TIF mold for next stage. The 
squared area difference can be expressed as 

 , (1) 

where is the TIF mold for stage s and  is 

the TIF of the currently selected items. 

2. For item i in the current set, randomly draw 
another item among the eligible items from the 
item bank. Replace item i with the new random 
draw and compute the squared area 
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difference (Equation 1). If the squared area 
difference decreases with the replacement, keep 
the replacement. If the squared area difference 
stays the same or increases, discard the new 
random draw and retain the previous selection.  

3. Repeat the process described in (2) for each of the 
currently selected items. 

4. Iterate (1) to (3) until the number of iterations 
reaches the target. 

Note that the shape of the module being built for the 
next stage comes closer to the TIF mold as the 
module-shaping process iterates. If the number of 
iterations for the module-shaping process is large, for 
example, as large as the number of eligible items in the 
item bank, then the shape of the finalized module for 
the next stage will likely be the one that is as close to 

the TIF mold as possible given the item bank. In this 
case, however, the random factor for the individual 
item selection would be minimized and so too would 
be the level of exposure control and item bank 
utilization. Once the system shapes the module for the 
next stage, it is administered to the examinee, and the 
whole process is repeated until the last stage is 
administered.  

The new MST method, hereafter referred to as MST by 
shaping (MST-S), combines the unique properties of 
both CAT and traditional MST designs, which will be 
referred to as MST by routing (MST-R) to distinguish it 
from the new MST-S. A series of simulation studies 
were conducted to evaluate the performance of MST-
S, comparing it both to MST-R and typical CAT 
conditions.  

 
Figure 3. Illustration of Multistage Testing by Shaping 
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Methodology 

Simulation Design 

The MST-R condition served as a baseline for 
simulation design, using the 1-3-3 design. Each 
module contained 20 items. The first-stage routing 
module consisted of items with a wider range of 
difficulties; the second and third stages each consisted 
of three modules with varying levels of difficulty (easy, 
medium, and hard). A total of 120 items was used to 
construct the 1-3-3 MST. The items were derived from 
an item bank of multiple choice items measuring 
quantitative reasoning skills in an operational CAT 
program for higher education. Figure 1, introduced as 
an example earlier in this paper, displays the structure 
of the stages and information functions for each 
module. After administration of each stage, individual 
examinee’s interim θ estimate was computed, and a 
module expected to result in the maximized 
information function at the estimate was selected for 
the following stage. For exposure control, two 
additional panels were constructed consisting of items 
with identical item characteristics and routing rules (in 
practice, it would be unrealistic to assume that all 
panels have items with the exact same characteristics, 
but this was done for the research purposes in this 
study). Thus, the MST-R condition included a total 
420 items (20 items per module × 7 modules per panel 
× 3 panels = 420).  

Two different CAT conditions were conducted for 
comparison purposes. The first CAT condition used 
the maximum Fisher information (CAT-MFI) criterion 
for item selection. For exposure control, the 
‘randomesque’ method (Kingsbury & Zara, 1989) was 
used, and one of the best three items based on the 
MFI criterion was randomly selected and administered 
(the 1/3 random factor was chosen for its similarity to 
the MST-R condition, in which one of the three panels 
was randomly chosen and administered). The second 
CAT condition used the a-stratification method with 
b-blocking (CAT-aStr; Chang & Ying, 1999; Chang, 
Qian, & Ying, 2001). Although the stratification 
method is already designed to control item exposure 
by stratifying the item bank, the randomesque method 
was applied as an additional exposure control method 
in this condition as well (randomly selecting one of 
three best items). The item bank was stratified into 

three item strata and included the same 420 items used 

to create the MST-R condition.
1
  

For MST-S, the main focus of this study, the test 
consisted of three stages with 20 items each, the same 
as the MST-R condition. Target TIFs were established 
for each stage and were set at three evaluation points 

on the θ scale: - 1, , and + 1. For the first stage, 
the TIF targets were 4, 5, and 4. For the second and 
third stages, target TIFs were 9, 15, and 9, and 12, 25, 
and 12, respectively. These targets were established 
based on the cumulative TIFs of modules set for the 
MST-R (Figure 2) condition, allowing the MST-S 
condition to aim for a comparable level of 
measurement precision (the peak target TIF value of 

25 at  for the third stage is translated into 0.20 of the 
standard error of θ estimation). For the module-
shaping process of MST-S, three different conditions 
were studied: 3, 6, and 100 iterations, which, hereafter, 
will be referred to as MST-S3, MST-S6, and MST-
S100, respectively.  

Data 

Sixty thousand simulees were randomly drawn from a 
uniform distribution ranging from -3 and 3. The same 
set of simulees was used in all six studied conditions 
(MST-R, CAT-MFI, CAT-aStr, MST-S3, MST-S6, and 
MST-S100). The initial θ value for selecting the first 
item (for CAT-MFI, CAT-aStr, and MST-R) was a 
random number drawn from a uniform distribution 
ranging from -0.5 and 0.5. During simulating test 

administrations, interim θ estimates ( ) were 
computed using the expected a posteriori (EAP) 
estimation method. Once the final stage finished, final 
θ estimates were computed using the maximum 
likelihood estimation (MLE) method. 

Evaluation 

Upon completion of all simulations, conditional 
standard errors of estimation (CSEE), conditional 
mean absolute error (CMAE), and conditional bias 
statistics were computed to evaluate the measurement 
performance of the studied methods. Those 

                                                 

1 Because the item pool consisted of items collected from the 
preassembled MST-R item modules, it was not necessarily 
optimized for the CAT studies’ conditions. 
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conditional statistics were conditionalized on θ levels, 
and the width of the θ interval was 0.1. The level of 
item exposure / pool utilization was also evaluated. 

Results 

Measurement Performance 

Figure 4 displays the CSEE, which essentially is the 
inverse of the square root of final TIF across θ. Under 
the MST-R condition (solid gray curve), noticeable 
bumps in CSEE were observed between -1.5 and -0.5 
and between 0.5 and 1.5. Given the MST-R design and 

modules shown in Figure 2, the fluctuations in CSEE 
with the MST-R did not differ much from expected 
results.  

The CAT-MFI condition showed a CSEE that was 
much lower than the MST-R condition, which, again, 
was no surprise given the fact that the MFI method 
always looks for items that maximize the information 
function. The CAT-aStr condition resulted in a similar 
CSEE pattern, but the overall CSEE level was slightly 
higher than that seen in the CAT-MFI condition.  

 
Figure 4. Conditional Standard Errors of Estimation for Final θ Estimation 

 

Three different MST-S conditions were studied, each 
differing in the number of shaping iterations. When 
the module-shaping process was set to iterate three 
times (MST-S3), the overall CSEE was comparable to 
the MST-R condition but slightly higher in many θ 
areas. With the six iterations for shaping (MST-S6), the 
CSEE was lower than the MST-R condition for most θ 
areas. When the shaping iteration was increased to 100 
(MST-S100), the resulting CSEE was between the 
MST-S6 and CAT-aStr conditions. Looking at the 
MST-S3, MST-S6, and MST-100 conditions, it was 
apparent that the more iterations for module-shaping 

process, the lower the CSEE. It should be noted that 
the increase in the number of shaping iterations does 
not necessarily lower the overall CSEEs; with the 
increased shaping iterations, the shape of the module 
is more likely to be closer to the TIF target. If the TIF 
target was lower, the overall CSEEs would have been 
increased toward the target as the number of shaping 
iterations increased. It is also worth noting that the 
CSEE observed on the MST-S conditions was much 
flatter (fewer fluctuations) throughout the observed θ 
areas than that seen under the MST-R and CAT 
conditions (especially with more iterations for 
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shaping). This result would seem to indicate that the 
new MST-S approach is effective in controlling the 
final TIF and SEE regardless of an examinee’s 
proficiency level.  

The conditional standard error of measurement was 
evaluated based on the conditional mean absolute 
error (CMAE). As shown in Figure 5, the overall 
patterns of the CMAE under each studied condition 
were similar to the CSEE patterns shown in Figure 4. 

In terms of estimation bias, all studied conditions 
showed practically none when θ = 0. Under all studied 
conditions, θ tended to be underestimated when θ > 0 
and overestimated when θ < 0, which essentially 
would shrink the scale of θ. The absolute magnitudes 
of the biases in Figure 6, however, were too small to 
be a major concern in practice (less than ±0.1 between 
-2.5 and 2.5 except for the MST-R condition, which 
showed slightly more biases around θ = 1.5). 

 
Figure 5. Conditional Mean Absolute Error for Final θ Estimation 

 
 

Item Pool Utilization 

In Figure 7, the 420 items used in all six studied 
conditions were ordered by a-parameter values (the 
smallest on the left and the largest on the right of the 
x-axis) and plotted with exposure rates. Under the 
MST-R condition, 60 items in the routing module for 
the first stage (20 items per panel × 3 panels) showed 
the exposure rate of 0.33, which was exactly as 
expected under the MST-R design with three panels. 
All other items used in the modules for the second and 
third stages did not exceed the exposure rate of 0.13. 
The maximum observed exposure rate (0.33) of the 
MST-R condition therefore served as a baseline (the 
dotted horizontal lines).  

Under the CAT-MFI condition, the exposure pattern 
exhibited the same tendency of the MFI method, 
favoring items with higher a-parameter values. 
Seventeen items exceeded 0.33 in the CAT-MFI 
condition, and the maximum observed exposure rate 
was 0.80. On the other hand, 96 items (23% of the 
item pool) with lower a-parameter values ended up not 
being used at all. These results from the CAT-MFI 
condition concur with existing literature that points 
out the inefficiency of the MFI method in item pool 
utilization (Georgiadou, Triantafillow, & Economides, 
2007; Stocking, 1993).  
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Figure 6. Conditional Bias for Final θ Estimation 

 

With the a-stratification method (CAT-aStr), there 
were no unused items; however, several items were 
used only rarely (Figure 7). Unlike the CAT-MFI 
condition, the CAT-aStr condition showed no 
tendency to use items with higher a-parameter values 
any more frequently than others. Rather, some items 
with lower a-parameter values showed higher exposure 
rates, up to 0.67. The main reason for such an item 
exposure pattern in the CAT-aStr condition is that the 
item pool was stratified into three item strata, and the 
item stratum used in the beginning was the one with 
lower a-parameter value. At the early stage of CAT, the 
interim θ estimate and item selection are heavily 
influenced by the initial θ value, which was a random 
value between -0.5 and 0.5. Therefore, among the 
items in the first item stratum, those items whose 
difficulty was close to zero were used more often than 
items whose difficulty was far from zero.  

Items were used much more evenly with the new 
MST-S method than they were with the other CAT 
and MST-R conditions. Under the MST-S3 and MST-
S6 conditions, there were no unused items, and the 
maximum exposure rate was below 0.19. As shown in 
Figure 7, the MST-S method seems to use items with 
higher a-parameter values more frequently as the 
number of shaping iterations increased to 100 (MST-
S100). It should be noted, however, that increases in 
the number of shaping iterations does not necessarily 
make the MST-S method use more items with higher 
a-parameters. If the target TIF had been lower than 
the ones set in the studied conditions, the increase in 
the number of shaping iterations would have caused 
the MST-S method to use more items with lower a-
parameters.  



An Approach to Assembling Optimal Multistage Testing Modules on the Fly, Han & Guo 

 © 2013 Graduate Management Admission Council®. All rights reserved 11 

Figure 7. Item Exposure Rates (Items Ordered by a-Parameter Value) 

 
 

Discussion 

The main purpose of the simulation study was not to 
compare the MST-S method to other MST-R and 
CAT methods and determine which one performs the 
best but to understand how the new MST-S works in 
typical testing scenarios. The results of the studied 
conditions should not be imprudently generalized or 
taken as typical cases for each method. As mentioned 
earlier, numerous variations in MST-R and CAT 
designs are possible (Lord, 1980; Zenisky et al., 2010), 
and even a small change in exposure control and/or 
item pool composition, for example, can have a major 
impact on the outcome. Therefore, it is important to 
use the results from the studied conditions that served 
as baselines (MST-R, CAT-MFI, and CAT-aStr) only 
as a means to understand the simulation environment 
where the MST-S was evaluated. 

Based on the overall simulation results, it is apparent 
that the new MST-S approach offers a feasible 
solution for MST by shaping modules for each stage 
on the fly. Under studied conditions, the MST-S 
method was able to achieve measurement precision 
comparable to the MST-R condition after only three 
iterations of the shaping process. With six iterations of 

the shaping process, the MST-S resulted in CSEE and 
CSEM that were very close to the target and stable 
throughout the θ scale of interest. Also, the shaping 
algorithm repeating a random drawing of items turned 
out to be remarkably effective not only in controlling 
item exposure but also in utilizing the whole item 
pool.  

As mentioned earlier, the MST-S approach addresses 
several issues with traditional MST-R and CAT while 
retaining unique advantages of both MST-R and CAT. 
Unlike MST-R, MST-S item modules do not need to 
be preassembled and the module is shaped on the fly 
according to the autocentered TIF target, resulting in 
final TIFs for individuals that are much more 
consistent regardless of examinees’ proficiency level. 
Again, unlike MST-R, all eligible items can be 
considered for use at every stage in MST-S, which 
greatly improves the overall level of item pool 
utilization. Like MST-R, however, MST-S still 
administers a group of items for each stage and allows 
examinees to move back and forth and change their 
responses within each stage. In most CAT programs, 
which are typically of fixed test length, the 
measurement precision (i.e., SEE for final θ estimate in 
operational definition) is not strictly controlled. Some 



An Approach to Assembling Optimal Multistage Testing Modules on the Fly, Han & Guo 

12 © 2013 Graduate Management Admission Council®. All rights reserved. 

CAT programs do control SEE by terminating CAT 
administration once it reaches a target SEE, but then it 
often creates other problems related to inconsistency 
in test time and content specifications. On the other 
hand, while it adaptively constructs tests on the fly just 
like CAT, MST-S still can provide effective means of 
managing measurement precision based on the target 
TIF even when the test length is fixed. In addition, the 
module-shaping algorithm for MST-S integrates 
several CAT components for exposure control and 
content balancing within a single process, which 
results in substantial simplification of the overall 
adaptive algorithm. 

Of course, MST-S is not a one-size-fits-all solution. 
Because MST-S essentially retains the multiple stage 
structure, it may not be as adaptive as a typical CAT 
that selects an item after each item administration if 
the number of stages is too small. If measurement 
efficiency is the major concern and there is no need 
for item exposure control (for example, as in a brief 
self-report evaluation for symptoms in an emergency 
room), a CAT that uses the best items may be the 
more suitable choice. For testing programs in which 
local dependence among test items is the major 
concern, MST-R with preassembled modules, each of 
which are thoroughly reviewed by test measurement 
experts before test administration, could be a more 
appropriate solution over MST-S. Test developers 
need to consider carefully what they want to achieve 
from the test design before choosing the test mode. 

In this paper, the iterative module-shaping process 
with repeated random drawings was used to shape the 
modules for MST-S. Simulation results suggested that 

this method effectively addressed both item pool 
utilization and item exposure control issues while 
quickly realizing the target TIF (by fitting to a module 
mold) within a few iterations. This takes only a 
fraction of a millisecond on typical modern PCs. There 
are, however, a number of different ways to shape the 
module for each stage on the fly. Basically, any 
automated test assembly approach, such as the mixed 
integer programming or greedy methods in 
conjunction with additional exposure control 
components, could be used to shape a test module 
based on the computed module mold for each stage as 
long as the process can be done fast enough to be on 
the fly on typical client computers. This would be an 
interesting area for future studies.  
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