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Executive Assessment Math Review 
Although the following provides a review of some of the mathematical concepts of arithmetic and algebra, it is 
not intended to be a textbook. You should use this chapter to familiarize yourself with the kinds of skills that 
may be needed to help you answer the quantitative reasoning questions in the Executive Assessment. You may 
wish to consult an arithmetic or algebra book for a more detailed discussion of some of the topics. 

Section 1.0, “Arithmetic,” includes the following topics:  
1. Properties of Integers 
2. Fractions  
3. Decimals  
4. Real Numbers 
5. Ratio and Proportion 
6. Percents  
7. Powers and Roots of Numbers  
8. Descriptive Statistics  
9. Sets 
10. Counting Methods  
11. Discrete Probability  

 

Section 2.0, “Algebra,” does not extend beyond what is usually covered in 
a first-year high school course. The topics included are as follows: 

1. Simplifying Algebraic Expressions 
2. Equations  
3. Solving Linear Equations with One Unknown 
4. Solving Two Linear Equations with Two Unknowns  
5. Solving Equations by Factoring  
6. Solving Quadratic Equations  
7. Exponents  
8. Inequalities  
9. Absolute Value  
10. Functions  
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1.0 Arithmetic  
1. Properties of Integers  

An integer is any number in the set {. . . –3, –2, –1, 0, 1, 2, 3, . . .}. If x and y are integers and 0x   then x is a 
divisor (factor) of y provided that y = xn for some integer n. In this case, y is also said to be divisible by x or to be 
a multiple of x. For example, 7 is a divisor or factor of 28 since 28 = (7)(4), but 8 is not a divisor of 28 since there 
is no integer n such that 28 = 8n. 
 

If x and y are positive integers, there exist unique integers q and r, called the quotient and remainder, 
respectively, such that y xq r  and 0 r x  . For example, when 28 is divided by 8, the quotient is 3 and 
the remainder is 4 since 28 (8)(3) 4  . Note that y is divisible by x if and only if the remainder r is 0; for 
example, 32 has a remainder of 0 when divided by 8 because 32 is divisible by 8. Also, note that when a smaller 
integer is divided by a larger integer, the quotient is 0 and the remainder is the smaller integer. For example, 5 
divided by 7 has the quotient 0 and the remainder 5 since 5 = (7)(0) + 5. 

Any integer that is divisible by 2 is an even integer; the set of even integers is {. . . –4, –2, 0, 2, 4, 6, 8, . . .}. 
Integers that are not divisible by 2 are odd integers; {. . . –3, –1, 1, 3, 5, . . .} is the set of odd integers.  

If at least one factor of a product of integers is even, then the product is even; otherwise the product is odd. If 
two integers are both even or both odd, then their sum and their difference are even. Otherwise, their sum and 
their difference are odd. 
  

A prime number is a positive integer that has exactly two different positive divisors, 1 and itself. For example, 2, 
3, 5, 7, 11, and 13 are prime numbers, but 15 is not, since 15 has four different positive divisors, 1, 3, 5, and 15. 
The number 1 is not a prime number since it has only one positive divisor. Every integer greater than 1 either is 
prime or can be uniquely expressed as a product of prime factors. For example, 14 = (2)(7), 81 = (3)(3)(3)(3), 
and 484 = (2)(2)(11)(11). 
  

The numbers –2, –1, 0, 1, 2, 3, 4, 5 are consecutive integers. Consecutive integers can be represented by n, n + 
1, n + 2, n + 3, . . . , where n is an integer. The numbers 0, 2, 4, 6, 8 are consecutive even integers, and 1, 3, 5, 7, 
9 are consecutive odd integers. Consecutive even integers can be represented by 2n, + 1, 2n + 3, 2n + 5, . . . , 
and consecutive odd integers can be represented by 2n + 1, 2n + 3, 2n, + 5, . . . , where n is an integer. 

Properties of the integer 1. If n is any number, then 1  n = n, and for any number 
1

0, 1n n
n

   . 

The number 1 can be expressed in many ways; for example, 1
n

n
 for any number 0n  . Multiplying or 

dividing an expression by 1, in any form, does not change the value of that expression. 
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Properties of the integer 0. The integer 0 is neither positive nor negative. If n is any number, then n + 0 = n and 
0 0n   . Division by 0 is not defined. 

2. Fractions  

In a fraction 
n

d
, n is the numerator and d is the denominator. The denominator of a fraction can never be 0, 

because division by 0 is not defined. 

Two fractions are said to be equivalent if they represent the same number. For example, 
8

36
 and 

14

63
 are 

equivalent since they both represent the number 
2

9
. In each case, the fraction is reduced to lowest terms by 

dividing both numerator and denominator by their greatest common divisor (gcd). The gcd of 8 and 36 is 4 and 
the gcd of 14 and 63 is 7. 

 
Addition and Subtraction of Fractions  
 
Two fractions with the same denominator can be added or subtracted by performing the required operation 

with the numerators, leaving the denominators the same. For example, 
3 4 3 4 7

5 5 5 5


   and 

5 2 5 2 3

7 7 7 7


   . If two fractions do not have the same denominator, express them as equivalent fractions 

with the same denominator. For example, to add 
3

5
and 

4

7
, multiply the numerator and denominator of the 

first fraction by 7 and the numerator and denominator of the second fraction by 5, obtaining 
21

35
and 

20

35
, 

respectively; 
21 20 41

35 35 35
  . 

For the new denominator, choosing the least common multiple (lcm) of the denominators usually lessens the 

work. For 
2 1

3 6
 , the lcm of 3 and 6 is 6 (not 3 6 18  ), so 

2 1 2 2 1 4 1 5

3 6 3 2 6 6 6 6
       . 

Multiplication and Division of Fractions 

To multiply two fractions, simply multiply the two numerators and multiply the two denominators. For 

example, 
2 4 2 4 8

3 7 3 7 21


  


. 
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10 indicates the number of places that the decimal point is to be moved in the number that is to be multiplied 
by a power of 10 in order to obtain the product. The decimal point is moved to the right if the exponent is 
positive and to the left if the exponent is negative. For example, 42.013 10  is equal to 20,130 and 41.91 10  
is equal to 0.000191.  
 

Addition and Subtraction of Decimals 
To add or subtract two decimals, the decimal points of both numbers should be lined up. If one of the numbers 
has fewer digits to the right of the decimal point than the other, zeros may be inserted to the right of the last 
digit. For example, to add 17.6512 and 653.27, set up the numbers in a column and add:  

17.6512

653.2700

670.9212

  

Likewise for 653.27 minus 17.6512:  

653.2700

17.6512

635.6188

  

Multiplication of Decimals  
To multiply decimals, multiply the numbers as if they were whole numbers and then insert the decimal point in 
the product so that the number of digits to the right of the decimal point is equal to the sum of the numbers of 
digits to the right of the decimal points in the numbers being multiplied. For example:  

2.09 (2 digits to the right)

1.3
(1 digit to the right)

627

2090
(2 1 3 digits to the right)

2.717



 

 

Division of Decimals 
To divide a number (the dividend) by a decimal (the divisor), move the decimal point of the divisor to the right 
until the divisor is a whole number. Then move the decimal point of the dividend the same number of places to 
the right, and divide as you would by a whole number. The decimal point in the quotient will be directly above 
the decimal point in the new dividend. For example, to divide 698.12 by 12.4: 
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and –3 have the same absolute value, 3, since they are both three units from zero. The absolute value of 3 is 
denoted 3 . Examples of absolute values of numbers are  

7 7
5 5 5, ,  and 0 0.

2 2
       

Note that the absolute value of any nonzero number is positive. 

 
Here are some properties of real numbers that are used frequently. If x, y, and z are real numbers, then 

(1) and .x y y x xy yx     

 
For example, 8 3 3 8 11,  and (17)(5) (5)(17) 85.       

(2)         and .x y z x y x xy z x yx       

 

For example,               7 5 2 7 5 2 7 7 14,  and 5 3 3 5 3 3 5 3 15.            

(3)  .xy xz x y z    

 
For example,        718 36 718 64 718 36 64 718 100 71,800.      

(4) If x and y are both positive, then x y  and xy are positive.  

(5) If x and y are both negative, then x y  is negative and xy is positive.  

(6) If x is positive and y is negative, then xy is negative. 

(7) If 0xy  , then 0x  or 0y  . For example, 3 0y   implies 0y  . 

(8) x y x y   . For example, if 10x   and 2y  , then 12 12 ;x y x y      and if 10y   and

2y   , then 8 8 12 .x y x y       

5. Ratio and Proportion  

The ratio of the number a to the number b  0b   is 
a

b
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A ratio may be expressed or represented in several ways. For example, the ratio of 2 to 3 can be written as 2 to 

3, 2:3, or 
2

3
. The order of the terms of a ratio is important. For example, the ratio of the number of months 

with exactly 30 days to the number with exactly 31 days is 
4

7
, not 

7

4
. 

 

A proportion is a statement that two ratios are equal; for example, 
2 8

3 12
  is a proportion. One way to solve a 

proportion involving an unknown is to cross multiply, obtaining a new equality. For example, to solve for n in 

the proportion 
2

3 12

n
 , cross multiply, obtaining 24 3n ; then divide both sides by 3, to get 8n  . 

6. Percents  

Percent means per hundred or number out of 100. A percent can be represented as a fraction with a 
denominator of 100, or as a decimal. For example:  

37
37% 0.37.

100
   

To find a certain percent of a number, multiply the number by the percent expressed as a decimal or fraction. 
For example:  

20% of 90 = 0.2 90 18

or

20 1
20% of 90 =  90 = 90 = 18.

100 5

 

 

 

Percents greater than 100%. 
 

Percents greater than 100% are represented by numbers greater than 1. For example:  

300
300% 3

100
250% of 80 2.5 80 200. 

 

  
 

Percents less than 1%. 

The percent 0.5% means 
1

2
 of 1 percent. For example, 0.5% of 12 is equal to 0.005 12 0.06.   
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Percent Change 
Often a problem will ask for the percent increase or decrease from one quantity to another quantity. For 
example, “If the price of an item increases from $24 to $30, what is the percent increase in price?” To find the 
percent increase, first find the amount of the increase; then divide this increase by the original amount, and 
express this quotient as a percent. In the example above, the percent increase would be found in the following 

way: the amount of the increase is  30 24 6  . Therefore, the percent increase is 
6

0.25 25%
24

  . 

Likewise, to find the percent decrease (for example, the price of an item is reduced from $30 to $24), first find 
the amount of the decrease; then divide this decrease by the original amount, and express this quotient as a 
percent. In the example above, the amount of decrease is  30 24 6  . Therefore, the percent decrease is 

6
0.20 20%

30
  . 

Note that the percent increase from 24 to 30 is not the same as the percent decrease from 30 to 24.  

In the following example, the increase is greater than 100 percent: If the cost of a certain house in 1983 was 
300 percent of its cost in 1970, by what percent did the cost increase?  

If n is the cost in 1970, then the percent increase is equal to 
3 2

2
n n n

n n


  , or 200%. 

7. Powers and Roots of Numbers  

When a number k is to be used n times as a factor in a product, it can be expressed as kn, which means the nth 
power of k. For example, 22 2 2 4    and 32 2 2 2 8     are powers of 2. 

 
Squaring a number that is greater than 1, or raising it to a higher power, results in a larger number; squaring a 
number between 0 and 1 results in a smaller number. For example:  

 

   

2

2

2

3 9 9 3

1 1 1 1

3 9 9 3

0.1 0.01 0.01 0.1

 

       
   

 

 

A square root of a number n is a number that, when squared, is equal to n. The square root of a negative 
number is not a real number. Every positive number n has two square roots, one positive and the other 

negative, but n  denotes the positive number whose square is n. For example, 9  denotes 3. The two square 

roots of 9 are 9 3  and 9 3   . 
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Every real number r has exactly one real cube root, which is the number s such that 3s r . The real cube root 

of r is denoted by 3 r . Since 3 32 8,  8 2  . Similarly, 3 8 2   , because  3
2 8   . 

8. Descriptive Statistics  

A list of numbers, or numerical data, can be described by various statistical measures. One of the most 
common of these measures is the average, or (arithmetic) mean, which locates a type of “center” for the data. 
The average of n numbers is defined as the sum of the n numbers divided by n. For example, the average of 6, 

4, 7, 10, and 4 is 
6 4 7 10 4 31

6.2
5 5

   
   

The median is another type of center for a list of numbers. To calculate the median of n numbers, first order 
the numbers from least to greatest; if n is odd, the median is defined as the middle number, whereas if n is 
even, the median is defined as the average of the two middle numbers. In the example above, the numbers, in 
order, are 4, 4, 6, 7, 10, and the median is 6, the middle number.  

For the numbers 4, 6, 6, 8, 9, 12, the median is 
6 8

7
2


 . Note that the mean of these numbers is 7.5. The 

median of a set of data can be less than, equal to, or greater than the mean. Note that for a large set of data 
(for example, the salaries of 800 company employees), it is often true that about half of the data is less than 
the median and about half of the data is greater than the median; but this is not always the case, as the 
following data show.  

3, 5, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 10, 10  

Here the median is 7, but only 
2

15
 of the data is less than the median. 

 
The mode of a list of numbers is the number that occurs most frequently in the list. For example, the mode of 
1, 3, 6, 4, 3, 5 is 3. A list of numbers may have more than one mode. For example, the list 1, 2, 3, 3, 3, 5, 7, 10, 
10, 10, 20 has two modes, 3 and 10. 

 
The degree to which numerical data are spread out or dispersed can be measured in many ways. The simplest 
measure of dispersion is the range, which is defined as the greatest value in the numerical data minus the least 
value. For example, the range of 11, 10, 5, 13, 21 is 21  5 = 16. Note how the range depends on only two 
values in the data.  

 
One of the most common measures of dispersion is the standard deviation. Generally speaking, the more the 
data are spread away from the mean, the greater the standard deviation. The standard deviation of n numbers 
can be calculated as follows: (1) find the arithmetic mean, (2) find the differences between the mean and each 
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A symbol that is often used with the multiplication principle is the factorial. If n is an integer greater than 1, 
then n factorial, denoted by the symbol n!, is defined as the product of all the integers from 1 to n. Therefore, 

  
    
    

2! 1 2 2,

3! 1 2 3 6,

4! 1 2 3 4 24,  etc.

 

 

 

 

Also, by definition, 0! 1! 1.   
 
The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects 
is to be ordered from 1st to nth, then there are n choices for the 1st object, 1n choices for the 2nd object, 

2n  choices for the 3rd object, and so on, until there is only 1 choice for the nth object.  
 
Thus, by the multiplication principle, the number of ways of ordering the n objects is 

        1 2 3 2 1 !.n n n n    

 
For example, the number of ways of ordering the letters A, B, and C is 3!, or 6: 
ABC, ACB, BAC, BCA, CAB, and CBA. 

These orderings are called the permutations of the letters A, B, and C. 

A permutation can be thought of as a selection process in which objects are selected one by one in a certain 
order. If the order of selection is not relevant and only k objects are to be selected from a larger set of n 
objects, a different counting method is employed.  

Specifically, consider a set of n objects from which a complete selection of k objects is to be made without 
regard to order, where 0 k n  . Then the number of possible complete selections of k objects is called the 

number of combinations of n objects taken k at a time and is denoted by 
n

k

 
 
 

. 

The value of 
n

k

 
 
 

 is given by 
 

!

! !

n n

k k n k

 
   

. 

Note that 
n

k

 
 
 

 is the number of k-element subsets of a set with n elements. For example, if 

 A, B, C, D, ES  , then the number of 2-element subsets of S, or the number of combinations of 5 letters 

taken 2 at a time, is 
  

5 5! 120
10.

2 2!3! 2 6

 
   

 
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The subsets are {A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {B, D}, {B, E}, {C, D}, {C, E}, and {D, E}.  

Note that
5 5

10
2 3

   
    

   
 because every 2-element subset chosen from a set of 5 elements corresponds to a 

unique 3-element subset consisting of the elements not chosen. 

In general, .
n n

k n k

   
      

 

11. Discrete Probability  

Many of the ideas discussed in the preceding three topics are important to the study of discrete probability. 
Discrete probability is concerned with experiments that have a finite number of outcomes. Given such an 
experiment, an event is a particular set of outcomes. For example, rolling a number cube with faces numbered 
1 to 6 (similar to a 6-sided die) is an experiment with 6 possible outcomes: 1, 2, 3, 4, 5, or 6. One event in this 
experiment is that the outcome is 4, denoted {4}; another event is that the outcome is an odd number: {1, 3, 5}.  
 

The probability that an event E occurs, denoted by P(E), is a number between 0 and 1, inclusive. If E has no 
outcomes, then E is impossible and ( ) 0P E  ; if E is the set of all possible outcomes of the experiment, then E 
is certain to occur and ( ) 1P E  . Otherwise, E is possible but uncertain, and 0 ( ) 1.P E   If F is a subset of E, 
then ( ) ( ).P F P E  In the example above, if the probability of each of the 6 outcomes is the same, then the 

probability of each outcome is 
1

6
, and the outcomes are said to be equally likely. For experiments in which all 

the individual outcomes are equally likely, the probability of an event E is 

The number of outcomes in 
( ) .

The total number of possible outcomes

E
P E   

In the example, the probability that the outcome is an odd number is  

    1,  3, 5 3 1
1,  3, 5 .

6 6 2
P     

Given an experiment with events E and F, the following events are defined: 

“not E” is the set of outcomes that are not outcomes in E; 

“E or F” is the set of outcomes in E or F or both, that is, ;E F  

“E and F” is the set of outcomes in both E and F, that is, .E F  
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The probability that E does not occur is (not ) 1 ( ).P E P E   The probability that “E or F” occurs is 
(  or ) ( ) ( ) (  and ),P E F P E P F P E F    using the general addition rule at the end of section 4.1.9 (“Sets”). 

For the number cube, if E is the event that the outcome is an odd number, {1, 3, 5}, and F is the event that the 

outcome is a prime number, {2, 3, 5}, then    2 1
(  and ) 3,  5

6 3
P E F P    and so 

3 3 2 4 2
(  or ) ( ) ( ) (  and ) .

6 6 6 6 3
P E F P E P F P E F         

Note that the event “E or F” is {1, 2,3,5}E F   and hence 
 1,  2, 3, 5 4 2

(  or ) .
6 6 3

P E F     

If the event “E and F” is impossible (that is, E F  has no outcomes), then E and F are said to be mutually 
exclusive events, and (  and ) 0.P E F   Then the general addition rule is reduced to 

(  or ) ( ) ( ).P E F P E P F   

This is the special addition rule for the probability of two mutually exclusive events. 

Two events A and B are said to be independent if the occurrence of either event does not alter the probability 
that the other event occurs. For one roll of the number cube, let  2,  4, 6A  and let  5,  6 .B   Then the 

probability that A occurs is 
3 1

( ) ,
6 6 2

A
P A    while, presuming B occurs, the probability that A occurs is  

 
 

6 1
.

25,  6

A B

B
 


 

Similarly, the probability that B occurs is 
2 1

( ) ,
6 6 3

B
P B     while, presuming A occurs, the probability that B 

occurs is  

 
 

6 1
.

32,  4,  6

B A

A
 


 

Thus, the occurrence of either event does not affect the probability that the other event occurs. Therefore, A 
and B are independent. 

The following multiplication rule holds for any independent events E and F: (  and ) ( ) ( ).P E F P E P F  

For the independent events A and B above, 
1 1 1

(  and ) ( ) ( ) .
2 3 6

P A B P A P B           
    
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Note that the event “A and B” is  6 ,A B  and hence    1
(  and ) 6 .

6
P A B P   It follows from the 

general addition rule and the multiplication rule above that if E and F are independent, then 

(  or ) ( ) ( ) ( ) ( ).P E F P E P F P E P F    

For a final example of some of these rules, consider an experiment with events A, B, and C for which 
( ) 0.23,  ( ) 0.40,  and ( ) 0.85.P A P B P C    Also, suppose that events A and B are mutually exclusive and 

events B and C are independent. Then 

 

 
  

(  or ) ( ) ( ) since  or  are mutually exclusive

0.23 0.40

0.63

(  or ) ( ) ( ) ( ) ( ) by independence

0.40 0.85 0.40 0.85

0.91

P A B P A P B A B

P B C P B P C P B P C

 
 

  
  


 

Note that P (A or C) and P (A and C) cannot be determined using the information given. But it can be 
determined that A and C are not mutually exclusive since ( ) ( ) 1.08,P A P C   which is greater than 1, and 
therefore cannot equal P (A or C); from this it follows that ( and ) 0.08.P A C   One can also deduce that  

(  and ) ( ) 0.23,P A C P A   since A C  is a subset of A, and that ( or ) _ ( ) 0.85P A C P C   since C is a 
subset of A C . Thus, one can conclude that 0.85 (  or ) 1 and 0.08 (  and ) 0.23.P A C P A C     

2.0 Algebra  
Algebra is based on the operations of arithmetic and on the concept of an unknown quantity, or variable. 
Letters such as x or n are used to represent unknown quantities. For example, suppose Pam has 5 more pencils 
than Fred. If F represents the number of pencils that Fred has, then the number of pencils that Pam has is 

5F  . As another example, if Jim’s present salary S is increased by 7%, then his new salary is 1.07S. A 
combination of letters and arithmetic operations, such as 

23
5, ,

2 5

x
F

x



 and 219 6 3,x x   is called an algebraic expression. 

The expression 219 6 3x x   consists of the terms 19x2, –6x, and 3, where 19 is the coefficient of x2, –6 is the 
coefficient of x1, and 3 is a constant term (or coefficient of 0 1x  ). Such an expression is called a second degree 
(or quadratic) polynomial in x since the highest power of x is 2. The expression 5F  is a first degree (or linear) 

polynomial in F since the highest power of F is 1. The expression 
23

2 5

x

x 
 is not a polynomial because it is not a 

sum of terms that are each powers of x multiplied by coefficients. 
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1. Simplifying Algebraic Expressions  

Often when working with algebraic expressions, it is necessary to simplify them by factoring or combining like 
terms. For example, the expression 6x + 5x is equivalent to  6 5 ,  or 11 .x x  In the expression 9 3 ,  3x y  is a 

factor common to both terms:  9 3 3 3 .x y x y    In the expression 25 6 ,x y  there are no like terms and 

no common factors.  

If there are common factors in the numerator and denominator of an expression, they can be divided out, 
provided that they are not equal to zero.  

For example, if 3,x   then 
3

3

x

x




 is equal to 1; therefore, 

 

  

3 33 9

3 3
3 1

3

y xxy y

x x
y

y




 




 

To multiply two algebraic expressions, each term of one expression is multiplied by each term of the other 
expression. For example:  

      
           

2

3 4 9 3 9 4 9

3 9 3 4 9 4

27 3 36 4

x y x x y x y x

x y x x y x

xy x y x

     

     

   

 

An algebraic expression can be evaluated by substituting values of the unknowns in the expression. For 
example, if 3x   and 2,y    then 23xy x y   can be evaluated as  

      2
3 3 2 3 2 18 9 2 29           

2. Equations  

A major focus of algebra is to solve equations involving algebraic expressions. Some examples of such 
equations are  

 
 
 

  
2

2

5 2 9 a linear equation with one unknown

3 1 2 a linear equation with two unknowns

5 3 2 7 a quadratic equation with one unknown

3 5
0 an equation that is factored on one side with 0 on the

4

x x

x y

x x x

x x x

x

  
  

  

 



 other
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The solutions of an equation with one or more unknowns are those values that make the equation true, or 
“satisfy the equation,” when they are substituted for the unknowns of the equation. An equation may have no 
solution or one or more solutions. If two or more equations are to be solved together, the solutions must 
satisfy all the equations simultaneously.  

Two equations having the same solution(s) are equivalent equations. For example, the equations  

2 3

4 2 6

x

x

 
 

 

each have the unique solution 1.x   Note that the second equation is the first equation multiplied by 2. 
Similarly, the equations  

3 6

6 2 12

x y

x y

 
 

 

have the same solutions, although in this case each equation has infinitely many solutions. If any value is 
assigned to x, then 3 6x  is a corresponding value for y that will satisfy both equations; for example, 2x   
and 0y   is a solution to both equations, as is 5x  and 9x  . 

 
3. Solving Linear Equations with One Unknown  

To solve a linear equation with one unknown (that is, to find the value of the unknown that satisfies the 
equation), the unknown should be isolated on one side of the equation. This can be done by performing the 
same mathematical operations on both sides of the equation. Remember that if the same number is added to 
or subtracted from both sides of the equation, this does not change the equality; likewise, multiplying or 
dividing both sides by the same nonzero number does not change the equality. For example, to solve the 

equation 
5 6

4
3

x 
  for x, the variable x can be isolated using the following steps:  

 
 

 

5 6 12 multiplying by 3

5 18 adding 6

18
dividing by 5

5

x

x

x

 




 

The solution, 
18

5
, can be checked by substituting it for x in the original equation to determine whether it 

satisfies that equation:  

18
5 6

18 6 125
4

3 3 3

          
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Therefore, 
18

5
x   is the solution. 

4. Solving Two Linear Equations with Two Unknowns  

For two linear equations with two unknowns, if the equations are equivalent, then there are infinitely many 
solutions to the equations, as illustrated at the end of section 4.2.2 (“Equations”). If the equations are not 
equivalent, then they have either a unique solution or no solution. The latter case is illustrated by the two 
equations: 

3 4 17

6 4 35

x y

x y

 
 

 

Note that 3 4 17x y   implies 6 8 34x y  , which contradicts the second equation. Thus, no values of x and 
y can simultaneously satisfy both equations. 

There are several methods of solving two linear equations with two unknowns. With any method, if a 
contradiction is reached, then the equations have no solution; if a trivial equation such as 0 = 0 is reached, then 
the equations are equivalent and have infinitely many solutions. Otherwise, a unique solution can be found.  

One way to solve for the two unknowns is to express one of the unknowns in terms of the other using one of 
the equations, and then substitute the expression into the remaining equation to obtain an equation with one 
unknown. This equation can be solved and the value of the unknown substituted into either of the original 
equations to find the value of the other unknown. For example, the following two equations can be solved for x 
and y. 

(1) 3 2 11

(2) 2

x y

x y

 
 

 

In equation (2), 2 .x y   Substitute 2 y  in equation (1) for x: 

 3 2 2 11

6 3 2 11

6 5 11

5 5

1

y y

y y

y

y

y

  
  

 
 



 

If 1,y   then 1 2x   and 2 1 3.x     

There is another way to solve for x and y by eliminating one of the unknowns. This can be done by making the 
coefficients of one of the unknowns the same (disregarding the sign) in both equations and either adding the 
equations or subtracting one equation from the other. For example, to solve the equations  
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 
 
1  6 5 29

2 4 3 6

x y

x y

 

  
 

by this method, multiply equation (1) by 3 and equation (2) by 5 to get  

18 15 87

20 15 30

x y

x y

 
  

 

Adding the two equations eliminates y, yielding 38 57,x   or 
3

.
2

x   Finally, substituting 
3

2
 for x in one of the 

equations gives 4y  . These answers can be checked by substituting both values into both of the original 
equations.  

5. Solving Equations by Factoring  

Some equations can be solved by factoring. To do this, first add or subtract expressions to bring all the 
expressions to one side of the equation, with 0 on the other side. Then try to factor the nonzero side into a 
product of expressions. If this is possible, then using property (7) in section 4.1.4 (“Real Numbers”) each of the 
factors can be set equal to 0, yielding several simpler equations that possibly can be solved. The solutions of 
the simpler equations will be solutions of the factored equation. As an example, consider the equation 

 23 22 5 1x x x x     : 

 
   

   
  

23 2

22

2 2

2

2

2 5 1 0

2 1 5 1 0

1 5 1 0

5 1 0

5 0 or ( 1) 0

5 or 1

x x x x

x x x x

x x x

x x

x x

x x

    

    

   

  
   

  

. 

For another example, consider 
  23 5

0.
4

x x x

x

 



 A fraction equals 0 if and only if its numerator equals 0. 

Thus,   23 5 0x x x   : 

2

2

0 or 3 0 or 5 0

0 or 3 or 5 0.

x x x

x x x

    

   
 

But 2 5 0x    has no real solution because 2 5 0x    for every real number. Thus, the solutions are 0 and 3. 
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The solutions of an equation are also called the roots of the equation. These roots can be checked by 
substituting them into the original equation to determine whether they satisfy the equation. 

6. Solving Quadratic Equations  

The standard form for a quadratic equation is 

2 0,ax bx c    

where a, b, and c are real numbers and 0a  ; for example: 

2

2

2

6 5 0,

3 2 0,  and

4 0

x x

x x

x

  

 

 

 

Some quadratic equations can easily be solved by factoring. For example:  

  

2(1) 6 5 0

5 1 0

5 0 or 1 0

5 or 1

x x

x x

x x

x x

  
  

   
   

 

  

2

2

(2) 3 3 8

3 8 3 0

3 1 3 0

3 1 0 or 3 0

1
 or 3

3

x x

x x

x x

x x

x x

 
  

  
   

  

 

 

A quadratic equation has at most two real roots and may have just one or even no real root. For example, the 

equation 2 6 9 0x x    can be expressed as     2
3 0,  or 3 3 0x x x     ; thus the only root is 3. The 

equation 2 4 0x    has no real root; since the square of any real number is greater than or equal to zero, 
2 4x   must be greater than zero.  

An expression of the form 2 2a b  can be factored as   a b a b  . 

For example, the quadratic equation 29 25 0x    can be solved as follows.  
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  
 

3 5 3 5 0

3 5 0 or 3 5 0

5 5
 or 

3 3

x x

x x

x x

  
   

  

 

If a quadratic expression is not easily factored, then its roots can always be found using the quadratic formula: 
If  2 0 0ax bx c a    , then the roots are 

2 24 4
 and 

2 2

b b ac b b ac
x x

a a

     
   

These are two distinct real numbers unless 2 4 0b ac  . If 2 4 0b ac  , then these two expressions for x are 

equal to 
2

b

a
 , and the equation has only one root. If 2 4 0b ac  , then 2 4b ac , is not a real number and 

the equation has no real roots.  

7. Exponents  

A positive integer exponent of a number or a variable indicates a product, and the positive integer is the 
number of times that the number or variable is a factor in the product. For example, x5 means (x)(x)(x)(x)(x); 
that is, x is a factor in the product 5 times. 

Some rules about exponents follow.  

Let x and y be any positive numbers, and let r and s be any positive integers. 

(1)      ;r sr sx x x   for example,     2 32 3 52 2 2 2 32.    

(2)  ;
r

r s

s

x
x

x
  for example, 

5
5 2 3

2

4
4 4 64.

4
    

(3)      ;
rr rx y xy  for example,   3 3 33 4 12 1,728.   

(4) ;
r r

r

x x

y y

 
 

 
 for example, 

3 3

3

2 2 8
.

3 3 27
    
 

 

(5)    s rr rs sx x x  ; for example,    4 33 12 4x x x  . 

(6) 
1r

r
x

x
  ; for example, 2

2

1 1
3

3 9
   . 



 

24 
 

(7) 0 1x  ; for example, 06 1 . 

(8)  
1 1rr

sr rs s sx x x x
 

   
 

; for example,  
22 1 11

32 2 33 3 238 8 8 8 64 4 and 9 9 3.
 

       
 

 

It can be shown that rules 1–6 also apply when r and s are not integers and are not positive, that is, when r and 
s are any real numbers. 

 
8. Inequalities  

An inequality is a statement that uses one of the following symbols: 

not equal to

greater than

greater than or equal to

less than

less than or equal to







 

Some examples of inequalities are 
1 3

5 3 9,6  and .
2 4

x x y     Solving a linear inequality with one unknown 

is similar to solving an equation; the unknown is isolated on one side of the inequality. As in solving an 
equation, the same number can be added to or subtracted from both sides of the inequality, or both sides of an 
inequality can be multiplied or divided by a positive number without changing the truth of the inequality. 
However, multiplying or dividing an inequality by a negative number reverses the order of the inequality. For 
example, 6 2 , but      1 6 1 2 .    

To solve the inequality 3 2 5x   for x, isolate x by using the following steps: 

 

 

3 2 5

3 7 7 adding 2 to both sides

7
dividing both sides by 3

3

x

x

x

 
 



 

To solve the inequality 
5 1

3
2

x 



 for x, isolate x by using the following steps: 
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 
 
 

5 1
3

2
5 1 6 multiplying both sides by 2

5 5 adding 1 to both sides

1 dividing both sides by 5

x

x

x

x





   

 
 

 

9. Absolute Value 

The absolute value of x, denoted x , is defined to be if 0x x   and –x if 0.x   Note that 2x  denotes the 

nonnegative square root of x2, and so 2x x . 

10. Functions  

An algebraic expression in one variable can be used to define a function of that variable. A function is denoted 
by a letter such as f or g along with the variable in the expression. For example, the expression 3 25 2x x 
defines a function f that can be denoted by  

  3 25 2.f x x x    

The expression 
2 7

1

z

z




 defines a function g that can be denoted by  

  2 7
.

1

z
g z

z





 

The symbols “f (x)” or “g (z)” do not represent products; each is merely the symbol for an expression, and is 
read “f of x” or “g of z.” 

Function notation provides a short way of writing the result of substituting a value for a variable. If x = 1 is 
substituted in the first expression, the result can be written  1 2,f    and  1f  is called the “value of f at 

1.x  ” Similarly, if 0z   is substituted in the second expression, then the value of g at 0z   is  0 7.g   

Once a function ( )f x  is defined, it is useful to think of the variable x as an input and ( )f x  as the 
corresponding output. In any function there can be no more than one output for any given input. However, 
more than one input can give the same output; for example, if   3h x x  , then    4 1 2 .h h     

The set of all allowable inputs for a function is called the domain of the function. For f and g defined above, the 
domain of f is the set of all real numbers and the domain of g is the set of all numbers greater than –1. The 
domain of any function can be arbitrarily specified, as in the function defined by 
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 “ 9 5 for 0 10.”h x x x     Without such a restriction, the domain is assumed to be all values of x that 

result in a real number when substituted into the function.  

The domain of a function can consist of only the positive integers and possibly 0. For example, 

  2  for 0,  1, 2, 3, .
5

n
a n n n     

Such a function is called a sequence and a(n) is denoted by .na  The value of the sequence  at 3na n  is 

2
3

3
3 9.60.

5
a     As another example, consider the sequence defined by    1 !

n

nb n  for n = 1, 2, 3, . . . . 

A sequence like this is often indicated by listing its values in the order b1, b2, b3, . . . , bn, . . . as follows: 

–1, 2, –6, . . . , (–1)n(n!), . . . , and (–1)n(n!) is called the nth term of the sequence. 

 


