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Abstract 
Measurement error and reliability are two important psychometric properties for large-scale assessments. 
Generalizability theory has often been used to identify sources of error and to estimate score reliability. The 
complicated nature of sparse matrix data collection designs in some assessments, however, can cause 
challenges in conducting generalizability analyses. The present study examines potential sources of 
measurement error associated with large-scale writing assessment scores by modeling multiple measurement 
components and conducting multistep analyses based on both univariate and multivariate generalizability 
theory. The study demonstrates how to use multiple generalizability analyses to produce approximate 
estimates of measurement error and reliability under complex measurement conditions when a single study 
design cannot capture and disentangle all measurement facets.  

Introduction 
The ability to identify sources of measurement error and 
estimate score reliability is fundamental for the proper 
interpretation of any measurement outcomes, including 
writing assessment scores (AERA, APA, NCME, 1999). 
Large-scale writing and other performance assessments 
often employ complex data collection designs, both to 
preserve measurement quality and to accommodate 
practical constraints. These data collection designs often 
result in a complicated mixture of missing data and 
partial nesting. The use of multifaceted measurement 
designs in large-scale assessments, therefore, can pose 
challenges for estimating sources of measurement error 
and score reliability.  

The magnitudes of estimated error variances and 
reliability coefficients are associated with (a) how errors 
are defined and modeled, (b) how data are collected, (c) 
how assessment scores are generalized, and (d) what 
measurement decisions will be made. Generalizability 
theory (G-theory, Brennan, 2001; Cronbach, Gleser, 
Nanda, & Rajaratnam, 1972) provides a comprehensive 
conceptual framework and powerful methodology that 
enables investigators to conceptualize and disentangle 
multiple sources of error and to evaluate the impact of 
changes in measurement procedures on score 
generalizability. G-theory has been used broadly to 
evaluate psychometric properties of writing and other 
performance assessments. In G-theory, an individual’s 
observed score is considered an estimate of his or her 
universe score. Universe score is analogous to the true 
score in classical test theory, and is defined as the 
expected score over all measurement conditions. 
Therefore, the use of G-theory requires an investigator 
to identify a universe of admissible observations and 
potential sources of error (facets) in a generalizability 
study (or G-study), and also to define the universe of  

 

generalization for assessment scores associated in a 
decision study (or D-study). A G-study analysis focuses 
on estimating the magnitudes of variance components in 
the universe of admissible observations. A D-study 
estimates measurement error variances (relative error 
variance and absolute error variance) and reliability-like 
coefficients (generalizability coefficient and 
dependability coefficient) for a specific measurement 
procedure (e.g., a specific number of tasks and raters in 
the universe of generalization). Relative error variance 
and a generalizability coefficient are appropriate for 
making relative decisions, such as rank ordering of 
examinees’ scores. Absolute error variance and a 
dependability coefficient are appropriate for making 
absolute decisions, such as whether or not examinees 
have achieved some level of proficiency. 

The complicated nature of the data collection designs in 
a large-scale assessment, however, can cause two major 
challenges when conducting generalizability analyses: 
(a) how to estimate variance (and possibly covariance) 
components, measurement error, and reliability for a 
sparse matrix design; and (b) how to treat confounded 
or hidden facets in the estimation.  

In writing and other similar performance assessments, 
raters and tasks often are the primary sources of 
potential measurement error. Substantial evidence exists 
to show that task sampling variability is usually the main 
source of measurement error. Rater differences, on the 
other hand, contribute relatively little to score variability 
for well-designed assessments with well-trained raters 
(Brennan, Gao, & Colton, 1995; Gao, Shavelson, & Baxter, 
1994; Lane, Stone, Ankenmann, & Liu, 1992; Linn & 
Burton, 1994). In other investigations of task sampling 
variability, researchers have found several factors that 
could lead to a large prompt or task sampling variability 
in writing and other performance assessments. One such 
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factor is domain misspecification associated with an 
inappropriately broad or narrow specification of a 
content domain. Another factor is inappropriate 
treatment of a fixed facet as random. Either situation 
could lead to an over- or underestimation of error 
variance and score generalizability (Keller, Clauser, 
Swanson, Harik, & Clyman; 2000; Shavelson, Gao, & 
Baxter, 1993). In addition, a large person-by-task (pt) 
interaction (which is present in most studies) may 
contain a hidden person-by-task-by-occasion (pto) 
interaction effect, especially since examinees typically 
perform assessment tasks on a single occasion 
(Cronbach, Linn, Brennan, & Haertel; 1997; Shavelson, 
Ruiz-Primo, & Wiley, 1999). 

Often in large-scale writing assessments, raters are 
assigned randomly to score essays, which typically leads 
to sparse data matrices. To estimate measurement error 
and reliability under a sparse data matrix, one of three 
procedures typically is used: (a) samples of data are 
selected to obtain fully crossed designs, (b) average 
ratings are used to simplify generalizability analyses 
when rater variability is negligible, or (c) a rating facet is 
introduced to replace a rater facet.  

The phrase “rater facet” refers to a facet in which all 
raters are essentially treated as being indistinguishable 
in generalizability analyses. The most common example 
occurs when raters are all persons who have similar 
training on the score rubrics. The use of a rating facet 
instead of a rater facet makes it possible to assess 
differences associated with ratings when raters are 
randomly assigned to score examinees and prompts. The 
two facets, however, may consist of conditions that are 
potentially different in a substantive manner.  

Specifically, the phrase “rating facet” has come to mean 
a facet that consists of conditions that are potentially 
different. A common example is a facet in which the 
ratings may come from a trained person or a computer 
scoring system. In such a case, variability associated 
with a rating facet involves some unknown amount of 
confounding of variability attributable to raters (i.e., 
persons) and variability attributable to applications of a 
computer algorithm. Previous research has reported that 
rater variability is slightly underestimated and 
generalizability is slightly overestimated with designs 
that use a rating facet as opposed to a rater facet (Lee & 
Kantor, 2005; Wang, Zhang, & Li, 2007). 

When multiple tasks are nested within fixed content 
categories or when multiple prompts are nested within 
fixed essay types, measurement precision can also be 
evaluated using multivariate generalizability theory 
(Brennan, 2001; Cronbach et al., 1972; Jarjoura & 
Brennan, 1983). This approach assesses both the distinct 
sources of errors associated with each measure (e.g., 
content domain or essay type) and the correlated errors 
that exist between the measures. A multivariate 
generalizability analysis deconstructs the total observed 
score variance-covariance matrix into separate matrices 

of variance-covariance components for universe scores 
and potential error sources. Such analysis also considers 
universe-score interrelations among the multiple 
measures such as content categories or essay types. 

For example, the variance-covariance matrices for a 
•• × op  multivariate G-study design, in which examinees 

are tested on multiple occasions (o) for each of two 

content categories (ν and 
'ν ) are: 
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Note that “ • ” represents joint (as linked) sampling of 
content categories across occasions. 

In addition, a multivariate generalizability analysis can 
estimate measurement precision for composite scores 
across multiple measures. Specifically, the variance of 
composite universe scores is 
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where vn  is the number of measures, and the vw  and 

'vw  are usually proportional weights summing to unity. 

The measurement error and generalizability of 
composite scores depends not only on the universe of 
generalization and type of decision (absolute or 
criterion-referenced vs. relative or norm-referenced) but 
also on the relationship between measures (linked or 
jointly sampled vs. independently sampled), for example, 
letting “ • ” represent linked sampling and “  ” represent 
independent sampling. In a ip ×•  multivariate 
generalizability analysis, the relative error variance of 
average scores for an independent sampling of prompts 
(i) within each essay type is 
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where iv 'n  is the number of prompts within each fixed 

category. The absolute error variance of average scores 
is 
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When a facet is jointly sampled, both the error variances 
and covariances for the facet contribute to total error 
variances. For example, in the •• × op  multivariate 
generalizability analysis, with all examinees assessed on 
both occasions, the relative error variance of composite 
scores across occasions is 
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The absolute error variance is 
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No matter what the nature of the sampling (joint or 
independent), the generalizability coefficient for 
composite scores is 
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and the dependability coefficient for composite scores is 
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The present study examines potential sources of 
measurement error in a large-scale writing assessment 
with a multifaceted measurement design. The Graduate 
Management Admission Test® (GMAT®) Analytical 
Writing Assessment (AWA) test data were used for this 
analysis. It should be noted that the Graduate 
Management Admission Council® (GMAC®) subsequently 
changed the test design in 2012. In previous GMAT AWA 
reliability research, Breland, Bridgeman, and Fowles 
(1999) reported Cronbach’s alpha estimates ranging 
from .66 to .79 for the paper version of the GMAT test 
administered in 1995. After the test was moved from 
paper-and-pencil mode to a computer adaptive 
environment, measurement conditions also changed. 
Siegert and Guo (2009) conducted generalizability 
analyses using two G-study designs and compared the 
results across multiple data samples. Specifically, they 

used a p x (r’:t) design with a rating (r’) facet and a p x 
t design with a hidden rater (r), and treated both ratings 
and essay types (t) as random. The analysis involved two 
essay types, Analysis of an Issue (AI) and Analysis of an 
Argument (AA). They found that average difficulty levels 
of the two GMAT AWA essay types and average ratings 
from a scoring engine and human raters were similar. 
The variance component for the person-by-essay type 
(pt) interaction was notable, however, suggesting that 
the rank orderings of examinees varied somewhat 
between the essay types. The average generalizability 
coefficient was .835 based on these two designs. In 
addition, Siegert and Guo (2009) computed both inter-
rater reliability and test-retest reliability and reported 
them as .88 and .78, respectively. These values, however, 
are likely upper-bound reliability estimates given that 
each design did not model all effects or potential 
sources of error associated with the GMAT AWA 
measurement procedure, such as prompts within essay 
types, occasions, and raters. 

The present study examines potential sources of 
measurement error associated with GMAT AWA scores 
by modeling multiple measurement components 
confounded in a sparse data matrix, which is very 
common in large-scale assessments. The complexity of 
the measurement procedures in these assessments does 
not permit the use of a single generalizability study 
design to disentangle the multiple sources of error that 
affect reliability. The study thus demonstrates how to 
use multiple generalizability analyses based on both 
univariate and multivariate G-theory approaches to 
model multiple measurement facets and how to provide 
approximate estimate of measurement error and 
reliability under complex measurement situations. 

Methodology 

Data and Instrument 
The data for this study were collected during the GMAT 
AWA administration in testing year 2009–2010. More 
than 28,000 examinees who took the test for a second 
time (repeaters) were included in all of the 
generalizability analyses reported here.  

The GMAT AWA assessment was developed to assess 
analytical reasoning skills through writing. Before the 
redesign of the test in 2012, examinees were asked to 
construct two essays: one to explain their viewpoint in 
responding to an issue (AI), and the other to investigate 
and critique the reasoning behind an argument (AA). 
Test takers had 30 minutes to complete each of the 
essays. Prompts for each essay type were selected 
randomly from each of their corresponding essay pools.  

GMAT AWA essays were rated by a human rater and an 
automated essay scoring engine (AES) developed by 
Vantage Learning. The human raters went through a 
standard training process before starting the ratings. 
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The AES was calibrated with human-scored essays for 
each prompt before it was deployed. Occasionally, for 
quality assurance purposes, examinees’ essays were 
rated by two human raters. Both human raters and the 
AES rated essays on a scale of 0 to 6 with increments of 
one. If the two original (unadjusted) ratings for a given 
essay differed by more than one point, an experienced 
human rater would provide a third rating for 
adjudication (i.e., adjusted rating) to replace both of the 
initial ratings. Prompt scores were calculated as the 
means of the adjusted ratings on the essays, and the 
final AWA reported score was the average of the 
prompt scores, rounded up to 0.5 from 0.25 or to 1.0 
from 0.75. Therefore, the GMAT AWA scores could 
contain measurement errors from multiple sources, 
including sampling errors from prompts, raters, and 
occasions. All analyses reported here are based on 
unadjusted ratings (i.e., no adjudication) from the 
original computer and human raters. 

Generalizability Analyses 
Objects of measurement and universe of admissible 
observations. Since the GMAT AWA measures individual 
analytical writing proficiencies, examinees (p) constitute 
the objects of measurement. All examinees were 
randomly administered one prompt from each of the 
two essay types, AI and AA. Each essay is scored by a 
human rater and an automated essay scoring engine 
(AES). Examinees could take the test more than once on 
different occasions. Therefore, the universe of admissible 
observations here can be conceptualized as containing 
at least four facets: prompts or items (i), essay types (t), 
raters (r) or ratings (r’), and occasions (o). In the 
idealized universe of admissible observations, each of 
these facets is random, except for essay type, which has 
two fixed levels (AI and AA).  

For the current operational measurement procedure, 
relationships among these facets and the objects of 
measurement are very complicated, as specified below: 

1. The assessment contains two essay types (t) and 
each has different prompts (i); i.e., (i:t); 

2. Examinees take both essay types; i.e., (p x t); 

3. Different items are randomly administered to 
different examinees; i.e., (i:p); 

4. Each person receives two ratings ( 'r ) for each 
prompt; i.e., (p x r’);  

5. Different human raters (r) score different examinees; 
i.e., (r:p); 

6. Most human raters are trained to score only one 
essay type; i.e., (r:t); 

7. Raters may score any of the administered prompts 
within an essay type; i.e., [(r x i):t]; 

8. Examinees may take the test on multiple occasions 
(o); i.e., (p x o); 

9. The same essay types are administered on each 
occasion; i.e., (t x o); 

10. Raters often score the same essay type across 
different occasions; i.e., [(r:t) x o]; 

11. Since only one prompt within each essay type is 
administered to an examinee, prompt and prompt 
types are confounded; i.e., (i, t); and 

12. Since only one prompt of each essay type is 
administered on each occasion, prompt and 
occasion are also confounded; i.e., (i, o).  

Due to the complexity of the GMAT AWA measurement 
procedure, the objects of measurement were not fully 
crossed with all facets—some facets were nested (e.g., 
r:t), and others were confounded (e.g., i and o). Also, 
some facets, such as raters, prompts, and occasions, 
were random but others were fixed—e.g., only two essay 
types were administered. Consequently, given available 
data, the measurement conditions cannot be modeled 
by a single completely crossed or nested G-study 
design. The available data from the measurement 
procedure also precluded obtaining nonconfounded and 
unbiased estimates of each possible variance 
component in the universe of admissible observations. 
Nevertheless, as Brennan (1992, p. 122) pointed out, 
“from a practical viewpoint it is quite difficult to conduct 
an extensive G study. However, it is possible, in principle, 
to estimate variance components for a universe of 
admissible observations using multiple G studies, any 
one of which involves only a subset of facets in the full 
universe.”  

In the present study, multiple generalizability analyses 
were conducted that, in total, give a picture of the 
contributions of facets to error variances and 
coefficients. Final results are reported in terms of ranges 
of likely values of standard errors of measurement and 
coefficients, since it cannot be argued convincingly that 
any single analysis is clearly preferable to all others. 
GENOVA (Crick & Brennan, 1983) was used for all 
univariate generalizability analyses and mGENOVA 
(Brennan, 1999) was used for the multivariate 
generalizability analyses in the study. 

Univariate G-study designs. Since each item belonged 
to just one specific essay type, a complete design 
reflecting the universe of admissible observations with 
all four facets would be: p x r x (i:t) x o. Since examinees 
took only one prompt within each essay type on each 
occasion, however, facets i and o were confounded. A 
reduced design could be p x r x t x o. Moreover, as the 
prompts were from two types of essays, AI and AA, 
strictly speaking, the t-facet was fixed. Due to the fact 
that (a) raters were not fully crossed with persons and 
essay types, (b) a single item was used for each essay 
type and on each occasion, and (c) prompts were 
randomly assigned to examinees, the following three 
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reduced G-study designs were considered for the 
univariate generalizability analyses: r:(p x t) x o, p x 
(r’:t) x o, and (i x r):(p x t). 

In total, these three designs covered all relevant facets in 
the universe of admissible observations. Each design 
involved a subset of facets and disentangled some 
unique main sampling effects and interactions that the 
other designs did not (see Appendix A.). The Venn  

diagrams for the designs are shown in Figures 1 to 4. It 
should be pointed out, however, that “nesting” (:) in 
these designs is not strictly true and does not fully 
characterize the data. It also should be noted that the 
rater facet (r) was used under the first and third designs 
in which raters were nested within examinees (p) and 
essay types (t). But the rating facet (r’) was used under 
the second design since all examinees received the same 
number of ratings.  

 

Figure 1. Venn Diagram for a p x r x t x o 
Design 

Figure 2. Venn Diagram for a r:(p x t) x o 
Design 

  

Figure 3. Venn Diagram for a p x (r’: t) x o 
Design 

Figure 4. Venn Diagram for a (i x r):(p x t) 
Design 

  
 
In addition, several two-facet crossed and nested 
designs were considered for additional univariate 
generalizability analyses. In many large-scale 
performance assessments, examinees take a test only 
once, respond to only one type of essay prompt, and 
have their responses scored by either human raters or an 
automated scoring engine. These two-facet analyses 
evaluated consistency of the estimated variance 
components across occasions, between essay types, or 
between computer and human ratings. Specifically, 
within each occasion, an r:(p x t) design was used to 
assess consistency of estimated sampling variabilities 

associated with raters and essay types between 
occasions (o). A p x o x r’ design was used to evaluate 
consistency of estimated sampling variabilities 
associated with occasions and ratings between essay 
types (t). The third design, i:(p x t), was used to examine 
consistency of estimated sampling variabilities 
associated with prompts and essay types between 
computer and human ratings ( 'r ). It should be noted 
that although these three designs together cover all 
relevant facets in the p x r x (i:t) x o design, each 
individual design involved only two main facets, with the 
other facets either hidden or confounded.  
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Multivariate G-study design. Multivariate 
generalizability analyses permit examination of universe 
score correlations and correlated errors across different 
measures, as well as estimation of error variances and 
generalizability of combined composite scores. In the 
GMAT AWA, there were two essay types, AI and AA, and 
they could be viewed as two fixed conditions for a 
multivariate generalizability analysis. More specifically, 
examinees had two universe scores, one for AI and the 
other for AA. A random-effects design also was 
associated with each essay type.  

Specifically, a 'rop ×× ••  multivariate G-study design 
was used, in which examinees took the same essay types 
across multiple occasions (o) and received the same 
number of ratings ( 'r ) on each occasion. Both 
examinees and occasions were considered jointly 
sampled across the essay types ( • ). Therefore, the 
universe scores and errors associated with occasions 
were linked across the essay types through covariance 
components for persons and occasions. Since different 
raters scored different essay types, however, r' was 
considered independent (  ) between the essay types. 
Original unadjusted ratings were used in the analysis. 

Results 

Univariate Generalizability Analyses  
Three-facet designs. Univariate generalizability analyses 
under the r:(p x t) x o and p x (r’:t ) x o designs provide 
estimates of sampling variability (i.e., variance 
components) associated with raters (r) or ratings (r’), 
essay types (t), and occasions (o), in addition to 
examinees (p) or universe score variance for the GMAT 
AWA scores. Tables 1 and 2 present the estimated G-
study variance components )(ˆ 2 ασ , D-study error 

variances )(ˆ 2 δσ and )(ˆ 2 ∆σ , and generalizability 

coefficients, 2ρ̂Ε  and φ̂ . 

Note that these tables report the D-study results for 
essay types as random and fixed. Although it is common 
practice to treat essay types as random in 
generalizability analysis, it should be recalled that for the 
GMAT AWA assessment, essay types are in fact fixed, 
since each form of the test contains the same two essay 
types. What makes the analyses challenging to interpret 
is the fact that there is only one operational prompt for 
each essay type. This means that prompt and essay type 
are completely confounded in the operational data, 
which is often denoted (i, t). To make matters even more 
complicated, prompts are random (since there are 
different prompts per form) yet essay types are fixed. 
Thus, there is a sense in which estimates (not 
parameters) of error variance and coefficients could 
legitimately be based on analyses in which t is random 
or fixed. Fortunately, as indicated in these two tables 

and as will be discussed below, this very complicated 
matter seems to make little difference for GMAT AWA.  

Results from the two generalizability analyses indicate 
that (1) variances associated with an occasion effect,

)o(ˆ 2σ , and essay type effect, )t(ˆ 2σ , were very 
small and close to zero, respectively, suggesting that 
mean differences were very small between the two 
occasions and the two essay types; (2) interactions 
between occasions and essay types, )ot(ˆ 2σ , also were 
very small; (3) there was some variation between the 
computer and human ratings confounded by 
interactions between ratings and essay types, since 

)t:r(ˆ '2σ  is not negligible; (4) interactions between 
examinees and measurement facets existed, such as 

)po(ˆ 2σ , )pt(ˆ 2σ , )(ˆ 2 potσ , )pt:r(ˆ 2σ , and 

)t:pr(ˆ '2σ , indicating that the rank orderings of the 
examinees might vary across occasions, between essay 
types, and between raters or ratings; and (5) the largest 

source of error came from the residuals, ):(ˆ 2 potrσ  

or ):(ˆ '2 otprσ . 

It should be pointed out these variance component 
estimates involve complex confounding since just one 
prompt (i) was used within each essay type and on each 
occasion. Thus, any effects associated with occasions or 
essay types contain error from prompt sampling. In 
addition, the results show that estimates of error 
variances and generalizability coefficients were not very 
different for norm-referenced and domain-referenced 
measurement decisions since the interactions between 
examinees and measurement facets were the major 
sources of error. Due to nesting, however, some of these 
interactions were confounded with main effects (see 
Appendix A). Also noteworthy is the similarity of the 
total estimated variances for the two designs. Most of 
the individual estimates were similar except for the 
variance component )(ˆ 2 ptσ . 
Figure 5 shows the percentages of total variance 
contributed by each component across the two designs. 
The results indicate that the use of a rater or rating facet 
has little impact on the estimated variance components, 
although the p x (r’: t) x o generalizability analysis 
provides more distinguishable variance component 
estimates than the r:(p x t) x o analysis due to different 
levels of nesting (see Appendix A). Estimates of error 
variances and generalizability coefficients also were 
similar between the R:(p x T) x O design and the p x ( 
R’:T) x O design. Under the current measurement 
conditions with two ratings (or raters) per essay, two 
essay types, and a single test administration, the 
estimated standard error of measurement (both δ and ∆ 
types) was about 0.40 and the estimated 
generalizability coefficient was about 0.76 for norm-
referenced decisions with T as random or fixed. 
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Table 1. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the r:(p x t) x o Design 

Sources )(ˆ 2 ασ  Percentage 
'
on  '

tn  '
rn  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  

r:(p x t) x o G-Study R:(p x T) x O Random-Effects D-studies 

p 0.502 56.34% 1 1 1 0.386 0.389 0.565 0.563 
r:pt 0.062 6.94% 1 1 2 0.260 0.263 0.659 0.656 

t 0.000 0.00% 1 2 1 0.221 0.223 0.694 0.692 
o 0.002 0.25% 1 2 2 0.158 0.160 0.761 0.758 

pt 0.002 0.24% 2 1 1 0.225 0.227 0.690 0.689 

po 0.056 6.23% 2 1 2 0.146 0.148 0.774 0.772 
ot 0.001 0.06% 2 2 1 0.126 0.128 0.799 0.797 

pot 0.076 8.52% 2 2 2 0.087 0.088 0.852 0.850 

r:pot 0.191 21.41% R:(p x T) x O D-Studies With T Fixed 

Total 0.891   1 2 1 0.220 0.222 0.696 0.694 

   1 2 2 0.157 0.159 0.763 0.760 
   2 2 1 0.125 0.127 0.801 0.799 

   2 2 2 0.086 0.087 0.854 0.852 
Note. Bold values are the estimates under the operational conditions. 

 

Table 2. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the p x (r':t) x o Design 

Sources  )(ˆ 2 ασ  Percentage 
'
on  '

tn  '
rn  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  

p x (r':t) x o G-Study p x (R':T) x O D-Study 

p 0.502 55.61% 1 1 1 0.374 0.401 0.573 0.556 

r':t 0.023 2.59% 1 1 2 0.260 0.274 0.659 0.647 

t 0.000 0.00% 1 2 1 0.215 0.229 0.700 0.687 

o 0.002 0.25% 1 2 2 0.158 0.166 0.761 0.751 

p r':t 0.038 4.26% 2 1 1 0.213 0.238 0.702 0.678 

pt 0.014 1.53% 2 1 2 0.146 0.160 0.774 0.759 

po 0.056 6.15% 2 2 1 0.121 0.134 0.806 0.790 

r':ot 0.000 0.00% 2 2 2 0.087 0.094 0.852 0.842 

ot 0.001 0.06% p x (R':T) x O D-Study With T Fixed 

ot 0.076 8.41% 1 2 1 0.208 0.222 0.710 0.696 

p r':ot 0.191 21.13% 1 2 2 0.151 0.159 0.771 0.762 

Total 0.903  2 2 1 0.114 0.127 0.817 0.801 

   2 2 2 0.080 0.087 0.864 0.854 
Note. Bold values are the estimates under the operational conditions. 
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Figure 5. Percentage of Total Variance Contributed by Each Effect From the r:(p x t) x o and 
p x (r’:t) x o Designs (r = Raters and r’ = Ratings)  

 
The (i x r):(p x t) univariate generalizability analysis 
considered essay types (t) and raters (r), in addition to 
the i-facet (prompts), which were considered instead of 
the o-facet (these two facets are confounded in the data 
collection). Table 3 presents the estimated variance 
components associated with these facets as well as error 
variances and generalizability coefficients associated 
with different measurement procedures. The results 
indicate that the estimated variance components 

)pt:i(ˆ 2σ and )pt:ir(ˆ 2σ  were the major sources 

of error, while )(ˆ 2 tσ  )pt(ˆ 2σ were near zero, 
suggesting that prompt sampling (within essay times) is 
more variable than essay type. Another finding showed 
the existence of rater effects and/or interactions, given 
that )pt:r(ˆ 2σ  was not negligible. The estimated 
relative standard error of measurement was 0.36 and the 
estimated generalizability coefficient was 0.80 for 
relative decisions with one prompt within each of the 
two essay types and two raters.  

It should be noted that the i:pt component in the 
generalizability analysis represents the confounding of 
the pi, it, and pit interactions in addition to the i effect. 
On the other hand, since prompts and occasions were 
confounded in all three designs, any estimated variance 
components associated with prompts (i) could also 
contain occasions (o) variance or vice versa. Actually, 
the magnitude of the estimated variance component for 
i:pt was similar to the sum of the estimated variance 
components for o, po, ot, and pot from the r:(p x t) x o 
and p x (r’: t) x o generalizability analyses. 

Moreover, it is noteworthy that the total estimated 
variance and the universe score variance were slightly 
higher for the (i x r):(p x t) generalizability analysis than 
for the r:(p x t) x o or p x (r’: t) x o generalizability 
analyses when the i or o facet was considered, but the 
corresponding variance components associated with 
error variances were similar. Figure 6 presents the 
percentages of total variance contributed by each 
component across the (i x r):(p x t) and r:(p x t) x o 
designs with i and o used interchangeably in the graph 
since they are confounded. Specifically, the variance 
components from (i x r):(p x t) are presented in Figure 6 
and the corresponding variance components from r:(p x 
t) x o are collapsed to produce corresponding variance 
components between the two designs (see Appendix A). 

Two-facet designs. To evaluate consistency of the 
variance component estimates across occasions, essay 
types, and rating types, several two-facet 
generalizability analyses were performed. The results of 
separate r:(p x t) generalizability analyses for Occasion 1 
and Occasion 2 are reported in Table 4. The pattern of 
the variance component estimates was similar for both 
occasions. The largest error source came from the 
residual )pt:r(ˆ 2σ , which included r, pr, rt, and prt 
within each occasion. A small estimated )t(ˆ 2σ  and a 
relatively large )pt(ˆ 2σ suggests that the average 
ratings for the two essay types were similar, although 
rank orderings of examinees could differ between them. 
Since there was only one prompt per type, however, 
variability among prompts could also contribute to the 
pt interaction. In addition, effects associated with 
occasion were hidden (e.g., po, por, and pot). 
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Table 3. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the (i x r):(p x t) Design  

Sources )(ˆ 2 ασ  Percentage 
'
tn  

'
pt:in  '

pt:rn  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  

(i x r):(p x t) G-Study (I x R):(p x T) D-Study 

p 0.530 57.79% 1 1 1 0.387 0.387 0.572 0.572 

t 0.000 0.02% 1 1 2 0.261 0.261 0.665 0.664 

i:pt 0.134 14.64% 1 2 1 0.224 0.224 0.697 0.697 

r:pt 0.062 6.74% 1 2 2 0.146 0.146 0.780 0.780 

pt 0.000 0.00% 2 1 1 0.193 0.193 0.727 0.727 

ir:pt 0.191 20.81% 2 1 2 0.130 0.130 0.799 0.798 

   2 2 1 0.112 0.112 0.822 0.821 

   2 2 2 0.073 0.073 0.876 0.876 

Total 0.917         

Note. Bold values are the estimates under the operational conditions. 

 
Figure 6. Percentage of Total Variance Contributed by Each Effect From the (i x r):(p x t) and 
r:(p x t) x o Designs (i = Prompts and o = Occasions)  

As seen previously, the estimates for error variances and 
generalizability coefficients were very similar for both 
norm-referenced and domain-referenced decisions as 
well as between the two occasions. Table 5 reports the 
estimated variance components, error variances, and 
generalizability coefficients for each essay type (AI and 
AA) under a p x o x r’ design. The results indicate that 
the major sources of error came from po and por´. Since 
only one prompt was used on each occasion, it is 
possible prompt sampling might have contributed to 
these interactions. These values may also be considered 
as estimates for the p x i x r’ design with one prompt 

and two ratings for each essay type since the i-facet and 
o-facet are confounded here. In addition, interactions 
between essay types and occasions were hidden. It 
should also be noted that the universe score variance 

)p(ˆ 2σ  and dependability coefficient for AI were slightly 
higher than those for AA. Since only one prompt was 
used on each occasion, however, prompt sampling also 
might have contributed to these interactions. The 
estimated standard errors of measurement were 0.50 for 
AI and 0.51 for AA and dependability coefficients were 
0.68 for AI and 0.65 for AA. 
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Table 4. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the r:(p x t) Design for Occasion 1 and Occasion 2  

r:(p x t) G-Study 

Sources  )(ˆ 2 ασ  Percentage Sources  )(ˆ 2 ασ  Percentage 

 Occasion 1  Occasion 2 

p 0.571 63.01% p 0.544 62.46% 

r:pt 0.251 27.73% r:pt 0.254 29.14% 

t 0.001 0.10% t 0.000 0.00% 

pt 0.083 9.16% pt 0.073 8.40% 

Total 0.906  Total 0.871  
R:(p x T) D-Study 

'
tn  

'
:ptrn  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  

Occasion 1 

1 1 0.334% 0.335 0.631 0.630% 

2 1 0.167% 0.168 0.774 0.773% 

1 2 0.209% 0.209 0.732 0.732% 

2 2 0.104% 0.105 0.846 0.845% 
Occasion 2 

1 1 0.327% 0.327 0.625 0.625% 

2 1 0.164% 0.164 0.769 0.769% 

1 2 0.200% 0.200 0.731 0.731% 

2 2 0.100% 0.100 0.845 0.845% 

Note. Bold values are the estimates under the operational conditions. 

 

Table 5. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the p x o x r' Design for Each Essay Type  

p x o x r’ G-Study 

Sources  )(ˆ 2 ασ  Percentage Sources  )(ˆ 2 ασ  Percentage 

 T1 (AI)  T2 (AA) 

p 0.528 58.81% p 0.503 55.5% 

r’ 0.015 1.69% r’ 0.032 3.47% 

o 0.001 0.12% o 0.005 0.50% 

p r’ 0.039 4.38% p r’ 0.038 4.14% 

po 0.134 14.96% po 0.128 14.17% 

or’ 0.000 0.01% or’ 0.000 0.00% 

por’ 0.180 20.03% p r’ 0.201 22.22% 

Total 0.898  Total 0.907  

p x O x R’ D-Study 
'
on  '

rn ′  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  
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Table 5. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the p x o x r' Design for Each Essay Type  

T1 (AI) 

1 1 0.354% 0.370 0.599 0.588% 

1 2 0.244% 0.253 0.684 0.676% 

2 1 0.197% 0.212 0.729 0.713% 

2 2 0.132% 0.140 0.800 0.791% 

T2 (AA) 

1 1 0.368% 0.404 0.578 0.555% 

1 2 0.248% 0.268 0.670 0.652% 

2 1 0.203% 0.236 0.713 0.680% 

2 2 0.133% 0.151 0.790 0.769% 

Note. Bold values are the estimates under the operational conditions. 

Sampling variabilities were examined for each rating 
type (i.e., computer vs. human) using the i:(p x t) design. 
The results presented in Table 6 indicate that the largest 
source of error was i:pt, which included i, pi, it, and pit, 

whereas the pt interaction was small within each type of 
rating. The results also suggest that the sampling 
variability was slightly larger for the human ratings than 
for the scoring engine. 

Table 6. Estimated Variance Components, Error Variance, and Generalizability Coefficients Under 
the i:(p x t) Design for Computer and Human Ratings 

i:(p x t) G-Study 

Sources )(ˆ 2 ασ  Percentage Sources )(ˆ 2 ασ  Percentage 

Computer Human 

p 0.549 63.82% p 0.541 62.83% 

t 0.000 0.02% t 0.002 0.18% 

i:pt 0.306 35.54% i:pt 0.344 39.99% 

pt 0.005 0.61% pt 0.011 1.23% 

Total 0.861  Total 0.897  

I:(p x T) D-Study 

'
tn  

'
pt:in  )(ˆ 2 δσ  )(ˆ 2 ∆σ  2ρ̂Ε  φ̂  

Computer 

1 1 0.311% 0.311 0.638 0.638% 

1 2 0.158% 0.158 0.776 0.776% 

2 1 0.156% 0.156 0.779 0.779% 

2 2 0.079% 0.079 0.874 0.874% 
Human 

1 1 0.355% 0.356 0.604 0.603% 

1 2 0.183% 0.184 0.748 0.746% 

2 1 0.177% 0.178 0.753 0.752% 

2 2 0.091% 0.092 0.856 0.854% 
Note. Bold values are the estimates under the operational conditions. 

(Cont’d) 
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Table 7 provides a range of (a) estimated universe score 
variances, (b) total G-study variances, (c) sums of G-
study variances contributing to relative error variances 
in the D-studies, (d) relative error estimates, and (e) 
estimated generalizability coefficients based on the 
three-facet and two-facet designs. Both the lowest and 
highest estimates are bolded in the table and the 
averages are presented in italics. Due to various degrees 
of nesting and confounding in these designs, not only 
can the estimates of G-study variance components and 
universe score variances be different, but the estimated 
standard errors also can vary due to different n’ terms 
in the denominators in the computations. Consequently, 
the estimated generalizability coefficients among these 
analyses also vary.  

Although no single design can disentangle all the 
variance components in the full p x r x (i:t) x o design, 
these estimates approximate universe score variance, 
measurement error, and reliability for the GMAT AWA 
scores and provide an overview of their measurement 
precision. Further, the estimates from the three-facet 
designs should be more reasonable than those from the 
two-facet designs because (a) the universe of admissible 
observations and universe of generalization in the three-
facet design are closer to those in the full design; and 
(b) each of the three-facet designs involves hidden or 
confounded effects that distort estimates.

Table 7. Estimated Variances and Generalizability Coefficients From Different Generalizability 
Analyses 

Design )(ˆ 2 pσ  
Total 

Variancea 
Error 

Varianceb )(ˆ δσ  2ρ̂Ε  

Univariate Analyses      

R:(p x T) x O 0.502 0.891 0.386 0.400 0.760 

p x (R':T) x O 0.502 0.903 0.375 0.400 0.760 

(I x R):(p x T) 0.530 0.917 0.387 0.360 0.800 

R:(p x T) for Occasion 1 0.571 0.906 0.334 0.320 0.850 

R:(p x T) for Occasion 2 0.544 0.871 0.327 0.320 0.840 

p x O x R’ for AI 0.528 0.898 0.354 0.490 0.680 

p x O x R’ for AA 0.503 0.907 0.368 0.500 0.670 

I:(p x T) for Computer Scores  0.549 0.861 0.311 0.390 0.780 

I:(p x T) for Human Raters  0.541 0.897 0.355 0.420 0.750 

Average 0.530 0.895 0.355 0.400 0.770 

Multivariate Analysis      
'ROp ×× ••     0.39 0.77 

aTotal G-study variance; bSum of G-study variance components contributing to relative error variance. 
Note: )(ˆ 2 pσ  = estimated universe score variance; )(ˆ δσ  = estimated relative standard error of measurement, and 2ρ̂Ε  = 

estimated generalizability coefficient with '
on  = 1, '

rn  = 2, '
tn  = 2, and '

t:in  = 1. 

Multivariate Generalizability Analyses  
The 'rop ×× ••  design. Under the multivariate 
generalizability theory framework, there are multiple 
universe scores for the objects of measurement, one for 
each fixed condition or measure (e.g., essay type AI or 
AA). Also, measurement facets can be either jointly 
sampled ( • ) or independent (  ) across the fixed 
conditions. In the 'rop ×× ••  design, the o-facet is 

jointly sampled ( •o ) across the essay types, while the 
r’-facet is independent ( 'r ) since different human 
raters scored different essay types. Thus, in addition to 
the variance components for the main effects and 
interactions under each essay type, there are covariance 

components associated with persons, occasions, and the 
person-by-occasion interactions between the essay 
types. Both estimated variances and covariances 
contribute to the universe score variance, the error 
variances, and generalizability coefficients for the 
average (composite) GMAT AWA scores.  

Table 8 reports estimated G-study and D-study 
variances (bolded diagonals) and covariances (lower off-
diagonals); universe score correlations (italic upper off-
diagonals); estimated error variances and covariances 
for each measure or essay type; and estimated universe 
score variance, error variances, and generalizability 
coefficients for average or composite (c) scores.
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Table 8. Estimated Variance and Covariance Components, Composite Score Error Variances, and 
Generalizability Coefficients Under the p˙ × o˙ × r'˚ Multivariate Design 

G-Study T1 - AI T2 - AA D-Study T1 - AI T2 - AA 
p 0.528 0.973 p 0.528 0.973 

 0.502 0.503  0.502 0.503 
o 0.001  O (n = 1) 0.001  

 0.002 0.005  0.002 0.005 

r’ 0.015  R’ (n = 2) 0.008  

  0.032   0.016 

po 0.134  pO 0.134  

 0.056 0.128  0.056 0.128 

p r’ 0.039  pR’ 0.020  

  0.038   0.019 

o r’ 0.000  OR’ 0.000  

  0.000   0.000 

po r’ 0.180  pOR’ 0.090  

    0.201     0.101 

Universe Score and Error Variance Composite Score Indices 

o = 1, r = 2 T1 - AI T2 - AA  o = 1, r = 2 o = 2, r = 2 

)p(ˆ 2σ  0.528 0.973 )p(ˆ 2
cσ  0.50891 0.50891 

 0.502 0.503 )(ˆ 2
C δσ

 0.15079 0.08020 

)(ˆ 2 δσ  0.244 0.226 )(ˆ 2
C ∆σ

 0.15916 0.08731 

 0.056 0.248 
2

C ρ̂Ε  0.77143 0.86386 

)(ˆ 2 ∆σ  0.253 0.222 Cφ̂  0.76177 0.85357 

     0.058 0.268    
Note. Bold values are the estimates under the operational conditions. 

The results indicate that (1) the universe scores for the 
two essay types were highly correlated (.97). In other 
words, examinees who scored high on AI would also 
generally receive high scores on AA, and vice versa; (2) 
correlated measurement error was small with a δ-type 
correlation coefficient of about .23 across the essay 
types; and (3) the estimated standard error of 
measurement was about 0.39 and the estimated 
generalizability coefficient was about 0.77 for the 
composite scores under a single occasion. These results 
are similar to those obtained for the three-facet 
univariate designs. 

Discussion 
One critical psychometric property of any good 
assessment is its score reliability. Assessment scores 
should be consistent and generalizable over the 
measurement conditions that will be used to make 
decisions. To evaluate and understand measurement 
error and score reliability, it is important to consider and 
to model various measurement components associated 
with the assessment scores. The complex nature of 
large-scale performance assessments, however, in which 
some measurement conditions are confounded in a 
sparse matrix, does not permit the use of a single typical 
G-study design to disentangle the multiple sources of 
measurement error that affect score reliability. 
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The results of this study using the GMAT AWA data 
suggest that it may be feasible to use multiple 
generalizability analyses—based on both univariate and 
multivariate generalizability theory approaches—to 
model multiple measurement facets and to 
approximately estimate measurement error and 
reliability of test scores under complex measurement 
situations. By comparing results from a variety of 
generalizability analyses, we hope not only to present a 
better picture of measurement error and reliability of the 
GMAT AWA scores, but also to provide a framework for 
evaluating measurement precision for other large-scale 
assessments with complicated measurement 
procedures, such as the anticipated assessments 
associated with the Common Core State Standards.  

The generalizability analysis results from the present 
study lead to the following conclusions. First, the GMAT 
AWA has the ability to differentiate examinees’ 
analytical reasoning skills through writing. Second, the 
two essay types (AI and AA) measure similar writing 
skills. Third, average scores across occasions are not 
very different. Fourth, the variance components 
associated with the interactions between the person-
effect and measurement facets are generally notable 
and they are the major sources of measurement error. 
But main effects for facets (and their own interactions) 
tend to be rather small. 

Therefore, the measurement error estimates for relative 
and absolute decisions are similar, as are the 
generalizability and dependability coefficients under 
each study design. Most estimated standard errors of 
measurement are between 0.30 and 0.40 and 
generalizability coefficients range from 0.75 to 0.80 (see 
Table 7). For the multivariate analyses, the estimated 
correlated errors are negligible and the estimated 
measurement error and generalizability for relative 
decisions are similar to those from the univariate 
generalizability analyses.  

It should be pointed out that the generalizability study 
designs under the GMAT AWA test administration do 
not permit disentangling occasion variance and prompt 
variance, which cannot be differentiated from essay type 
variance since only a single prompt is administered for 
each essay type on each occasion. The three-facet 
designs used in the study are the most comprehensive 
designs given the nature of the data, but they can only 
capture a subset of the measurement facets in the 
universe of generalization. 

To achieve more precise estimates of different sources 
of measurement error, a more comprehensive design is 
needed to help resolve important confounding issues 
among the facets. In particular, the most crucial 
confounding issues can be resolved only with a design 
(or designs) in which there are at least two prompts for  

 

 

each essay type, and in which there are at least two 
ratings from human raters. With such a design (or 
designs), it would be possible to estimate how much of 
the total measurement error variance is attributable to 
prompts (nonconfounded with essay types), and how 
much of the total measurement error variance is 
attributable to raters. In that case, we would be able to 
estimate the magnitudes of measurement error 
associated with prompt and rater samplings and their 
impact on writing assessment score reliability. If 
practical constraints should prevent such a 
comprehensive design, then it wouldn’t make much 
sense to provide a single estimate of absolute error 
variance, relative error variance, a generalizability 
coefficient, and/or a dependability coefficient. Instead, 
providing a range of estimates should more faithfully 
reflect the uncertainty in any one estimate. Doing so 
may be uncomfortable, but it reflects the uncertainty 
that inevitably arises when data do not conform to the 
structure of the intended universe of admissible 
observations and universe of generalization.  
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Appendix A. Variance Components Associated with Different G-Study Designs 
 

Table A. 1. Variance Components Associated With Different G-Study Designs 
Crossed i Confounded i Confounded i Confounded o Confounded Each O Each T Each R 

p x r x (i:t) x o p x r x t x o r:(p x t) x o p x (r':t) x o (i x r):(p x t) r:(p x t) p x r' x o i:(p x t) 

p p p p p p, po p, pt p, pr 

r  r r:pt (r, pr, rt, 
prt) r':t (r', r't) r:pt (r, pr, rt, 

prt) 

r:pt, or, 
por, ort, 
port  

r, r't   

t t t t t t, ot  t, rt 

o o o o    o, ot   

i:t (i, ti)       
i:pt, ir, pir, 
iri, pirt 

pr pr   pr':t (pr', pr't)    pr', pr't   

pt pt pt pt  pt pt, pot  pt, prt 

po po po po    po, pot   

pi:t (pi, pit)      i:pt (i, pi, ti, pti) 
*o, po, to, pto     

rt rt         

or or   r':ot 
(or', or't)    or', or't   

ot ot ot ot       

prt prt          

por por       por', por't   

pot pot pot pot       

ort ort          

ir:t (ir, irt)            

port port          

pir:t (pir, pirt)   r:pot (or, por, 
ort, port) 

pr':ot 
(por',por't) 

ir:pt (ir, irt, pir, 
pirt);*or, ort, 
por, port 

    

i:ot (io, iot)            

pi:to (pio, piot)            

ri:ot (ior, iort)            

pir:ot (pior, piort)               

Note. Individual symbol styles (bold, italic, or font) represent corresponding variance components among the designs; the shaded 
components are inestimable in the study; prompt (i) and occasion (o) are confounded; and hidden variance components are 
embossed under the two-facet designs. 
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